Report

Facility Wide Baseline Evaluation and Release Assessment Addendum Report

RCRA Corrective Action Program
Facility Lead Program
EPA ID VAD003175072

BAE Systems Norfolk Ship Repair Norfolk, Virginia

December 2008

Facility Wide Baseline Evaluation and Release Assessment Addendum Report

RCRA Corrective Action Program
Facility Lead Program
EPA ID VAD003175072

BAE Systems Norfolk Ship Repair Norfolk, Virginia

December 2008

TABLE OF CONTENTS

l. Introduction	1
1.1. Facility Wide Baseline Evaluation (FWBE)	1
1.2. Release Assessment	2
1.3. Facility Location	
1.4. Facility History	
1.5. Regional Land Conditions	3
1.5.1. Regional Geology	3
1.5.2. Regional Hydrogeology	3
1.5.3. Surface Water	
1.5.4. Subsurface Conditions at Norfolk Ship Repair	
2. FWBE and Release Assessment Field Activities	5
2.1. Soil Sample Collection	
2.2. Groundwater Sample Collection	
2.3. FWBE and Release Assessment Analytical Results	
2.3.1. Soil Analytical Results	
2.3.2. Groundwater Analytical Results	
2.4. Groundwater Monitoring	
2.5. Conclusions and Summary of FWBE and Release Assessment	
3. FWBE and Release Assessment Addendum Sampling	
3.1. Addendum Groundwater Sampling	
3.2. Addendum Soil Sampling	
3.3. Addendum Sampling Results	
3.3.1. Addendum Groundwater Sampling Results	
3.3.2. Addendum Soil Sampling Results	
4. Conclusions	14

Tables:

- 1-1 List of SWMUs/AOCs
- 1-2 List of SWMUs/AOCs recommended for No Further Action
- 1-3 Summary of Release Assessment SWMUs/AOCs and Sampling Requirements

Figure:

- 1 Site Location
- 2 SWMU/AOC Location Map
- 3 FWBE & Release Assessment Sampling Locations
- 4 Groundwater Contour Map
- 5 FWBE & Release Assessment Addendum Sampling Locations RA111/RA114
- 6 FWBE & Release Assessment Addendum Sampling Locations SWMW-105

Appendices:

- A Records of Subsurface Exploration
- B Groundwater Sampling Forms
- C Addendum Laboratory Analytical Report

1. Introduction

In August 2005, the United States Environmental Protection Agency (USEPA) invited BAE Systems Norfolk Ship Repair (Norfolk Ship Repair) to participate in a RCRA (Resource Conservation and Recovery Act) Corrective Action Facility Lead Program. BAE Systems Norfolk Ship Repair (Norfolk Ship Repair) accepted the USEPA invitation to participate in the Facility Lead Program by submitting a Letter of Commitment to the USEPA on September 20, 2005. The Letter of Commitment obligates Norfolk Ship Repair to meet the requirements of RCRA, enacted by Congress in 1980 and is administered in lieu of a RCRA Corrective Action (CA) Permit or Administrative Order of Consent.

In December 2005, Norfolk Ship Repair submitted a RCRA Facility Investigation (RFI) Work Plan, prepared by O'Brien & Gere Engineers, Inc. (O'Brien & Gere). The RFI Work Plan describes the process by which the RCRA Corrective Action Program will be implemented. The RFI Work Plan was developed as a "Master" work plan, that presents the protocols and proceedings by which site activities, investigations, and program efforts will be conducted. The RFI Work Plan also documents the strategies, objectives, and goals of the facility's CAP. By establishing the means, protocols, and procedures by which corrective action efforts will be conducted, regulatory approval, scope of works, and schedules can be streamlined and facilitated throughout all phases of the Corrective Action Program. The RFI Work Plan was submitted to the USEPA in December 2005 for review and approval. The USEPA agreed with the strategies presented in the RFI Work Plan and requested that Norfolk Ship Repair develop and implement a work plan for a Facility Wide Baseline Evaluation and Release Assessment. Norfolk Ship Repair retained O'Brien & Gere to develop and implement the FWBE and Release Assessment.

1.1. Facility Wide Baseline Evaluation (FWBE)

The objective of the FWBE is to evaluate current conditions across the facility, and at its borders, with consideration of the location, history, and uses of the facility and the land it lies on. Due to the urban-industrial nature of the site, and its location on reclaimed land, baseline concentrations at BAE Norfolk Ship Repair are likely to be higher than background levels typically acknowledged by regulatory agencies, as well as those concentrations used as typical risk-based screening levels. These elevated environmental concentrations are likely reflective of urban/industrial use and reclaimed land rather than the operation of solid waste management units/areas of concern (SWMUs/AOCs). It is the intention of Norfolk Ship Repair to embody consideration for these anthropogenic influences within the strategy of the RCRA program and subsequent investigative, evaluation, and corrective measures efforts. It is the intent of the FWBE to assess the non-SWMU/AOC-related environmental conditions at the facility.

The extent of the FWBE was based on the type, nature, and locations of the SWMUs/AOCs at BAE Norfolk Ship Repair and the conditions at the facility's boundaries. This information will be used to assess soil and groundwater conditions not related to the operation of the SWMU/AOCs identified at the facility.

1.2. Release Assessment

A Release Assessment is conducted to confirm the presence or absence of a release from specific SWMUs/AOCs. A list of constituents of potential concern (COPC), if any, is developed for each SMWU/AOC based on historic operations and each SWMU/AOC is evaluated for evidence of a release. Information presented in the 1997 NCAPS report indicated that no releases were observed at a number of the listed SWMUs/AOCs. Norfolk Ship Repair has reviewed and documented the current conditions of each SWMU/AOC identified in the NCAPS Report to evaluate whether a release has occurred. The initial phase of a Release Assessment included a visual inspection of each of the SWMUs/AOCs for evidence of a potential release and, based on inspections and the likelihood of a release of COPCs, a release assessment investigation was conducted. Appendix A of the FWBE and Release Assessment Work Plan presented the results of the initial visual inspections of the SWMUs/AOCs. Table 1-1 presents a list of identified SWMUs/AOCs at the shipyard. Table 1-2 presents a summary of SWMUs/AOCs recommended for "No Further Action" (NFA) and the rationale for the recommendation. Table 1-3 presents a list of SWMUs/AOCs that were identified for Release Assessment sample collection and analysis.

The Release Assessment investigation comprised the collection and analysis of environmental samples from suspected release locations. Based on the results of the Release Assessment investigation, individual SWMUs/AOCs were identified as appropriate for no further action, interim measures, or additional investigation through an RFI.

1.3. Facility Location

Norfolk Ship Repair is located on the Elizabeth River in Norfolk, Virginia. The site location map is presented as Figure 1. The facility is approximately 110 acres and is bounded on the west and southwest by the Elizabeth River and to the north, east, and southeast by parking areas, City-owned scrap yards, and Interstate 264.

Surrounding Norfolk Ship Repair to the east are commercial, and industrial areas. Drinking water for the facility and area surrounding Norfolk Ship Repair is supplied by the City of Norfolk, which specifically prohibits by ordinance the use of groundwater. Consequently, there are no supply water wells within one mile of the Norfolk Ship Repair property boundary and no potable supply wells within five miles of the facility.

1.4. Facility History

Norfolk Ship Repair repairs military and commercial ships, and has been in operation since 1915. The Norfolk Ship Repair facility was built on native material and dredged and other fill material mostly at the north end of the facility.

The shipyard accommodates two dry docks and five piers. A variety of activities occur at the shipyard including ship repair, machine shops, offices, waste water treatment plant, oil recovery and treatment facility, grit blasting, painting, dry docks, metal works, hazardous material use and storage, scrap metal containers, fire protection services, and other shipyard related services.

1.5. Regional Land Conditions

The overall topography of the Norfolk area is generally flat with subtle hills.

1.5.1. Regional Geology

Norfolk Ship Repair is located in the Coastal Plain Physiographic Province of southeastern Virginia. Underlying the Coastal Plain are unconsolidated gravels, sands, silts, and clays, ranging in age from Cretaceous to Recent. Bedrock in the tidewater area of Norfolk area is approximately 2,400 ft below ground surface. Six formations have been documented in the vicinity of Norfolk Ship Repair:

- The Potomac Group overlies Precambrian granitic and metamorphic "basement" rocks
- Transitional Beds occurring at a depth of approximately 700 ft and is a 40-ft thick sequence of clay beds and sands
- The Mattaponi Formation is of marine origin and is first encountered at a depth of approximately 500 ft and is 160 to 180 ft thick
- The Calvert Formation first encountered at a depth of approximately 400 ft
- The Yorktown Formation estimated to be at a depth of approximately 70 ft in the vicinity of the site.

The sediments overlying the Yorktown Formation are mostly fill materials, which range from 40 to 60 ft in thickness. Some of the basal sediments could be of Quaternary age and would belong to the Columbia Group. The Columbia Group is characterized by light-colored clay beds interspersed with oxidized fine- to medium-grained quartz sands and silt.

1.5.2. Regional Hydrogeology

The geologic formations underlying the Norfolk area are divided into four principal aquifers. From the land surface downward these units are the Quaternary Aquifer, the Yorktown Aquifer, the Eocene-Paleocene Aquifer, and the Cretaceous Aquifer (as designated by J.F. Harsh, 1980).

According to research at the Tidewater Regional office and Richmond office of the VDEQ, there are no supply water wells within 1 mile of the facility and no potable water supply wells within a 5-mile radius. According to Department of Utilities, VDEQ, and City of Norfolk representatives, the City of Norfolk municipal water supply system derives its water from surface water sources.

1.5.3. Surface Water

The nearest surface water is the southern branch of the Elizabeth River. The surface water flanks Norfolk Ship Repair facility to the north and west. Surface water is recharged from further upstream, the Dismal Swamp, precipitation, and groundwater.

This portion of the Elizabeth River, upstream of and including the area adjacent to Norfolk Ship Repair, has been widely impacted by anthropogenic constituents. The VDEQ has classified the Elizabeth River as an "impaired" waterway, and the Chesapeake Bay Program has characterized the Lower James River as an "Area of Emphasis".

1.5.4. Subsurface Conditions at Norfolk Ship Repair

The Norfolk Ship Repair facility was built on dredged material in the northern portions of the facility and natural river and marsh sediments.

Given the longevity of the shipyard's operations (90 years) and surrounding industrial nature, it is possible that the land surrounding and underneath the facility has experienced anthropogenic impacts and influences beyond the control of Norfolk Ship Repair, and independent of possible impacts from currently regulated SWMUs/AOCs. It is the intention of Norfolk Ship Repair to embody consideration for these anthropogenic influences within the strategy of the RCRA program and subsequent investigative, evaluation, and corrective measures efforts.

2. FWBE and Release Assessment Field Activities

To establish a baseline evaluation, and evaluate whether a release had occurred from a SWMU/AOC, soil borings were conducted across the site, in areas most likely unaffected by SWMUs/AOCs and also in those areas where a release would be likely if one was to occur. Fourteen (14) areas were chosen to establish baseline concentrations at Norfolk Ship Repair. Based on the results of the Release Assessment screening (described in the Work Plan [July 2007]), nine SWMUs/AOCs were identified as requiring additional investigation to confirm whether or not a release had occurred as the result of the operation of the unit. Sample areas are depicted on Figure 4.

Prior to use, equipment was calibrated according to the specifications issued by the manufacturer. Records detailing the calibration procedures, standards, dates, and personnel responsible for the calibration accompanied equipment calibrated by rental companies before receipt by O'Brien & Gere. Equipment requiring daily or weekly calibration was calibrated onsite if necessary, or at the discretion of the onsite geologist.

BAE Systems Norfolk Ship Repair was responsible for utility location, clearance and mark-out. O'Brien & Gere worked with BAE Systems to adhere to the sample areas selected by the USEPA; however, in some cases, sample areas may have been adjusted with consideration to utilities, safety issues, and/or shipyard activities.

An O'Brien & Gere geologist was onsite during sample collection procedures. The onsite geologist collected samples for laboratory analysis, inspected and classified soil, prepared appropriate field sheets and/or logs, and documented sample site and sample conditions. Bore logs maintained by the on-site geologist are presented in Appendix A.

The 23 sample areas were sampled in accordance with methods outlined in the SAP (Appendix C of the RFI Plan). Sampling was conducted as near to the center of the area as possible, taking into account site safety, utilities, both underground and above ground, and shipyard activities. Norfolk Ship Repair is a highly industrialized facility; as a result, activities at the shipyard at times necessitated moving sample areas. Sample areas were adjusted at the discretion of the onsite field task leader.

Soil cuttings, fluids, and other wastes generated by sampling activities were containerized and left onsite for management by Norfolk Ship Repair.

2.1. Soil Sample Collection

Soil sample collection from the 23 sample areas was achieved using hollow stem auger from August 20, 2007 through August 24, 2007. Surface soil (0-6 inches) and near surface soil (6-12 inches) samples were collected using decontaminated stainless steel split spoon soil sampler, stainless steel spoons, and stainless steel bowls. Soil samples were obtained in accordance with the procedures outlined in the SAP (Appendix C of the RFI Plan). Soil sampling was conducted until the water table was encountered.

Deeper soil samples were collected at 5-ft intervals during drilling. Samples were collected ahead of the drill bit to prevent disruption of the soil column and/or smearing of the sample before collection.

Each sample was uniquely labeled using standards given in the SAP (Appendix C of the RFI Plan), and the soil boring location was marked on the appropriate site map and described in the onsite geologist's field logbook. Boring logs were developed by the on site geologist at the completion of field activities. Descriptions of soil sample texture, composition, color, consistency, moisture content, and recovery were recorded.

One soil sample from each of the 23 sample areas was collected from between 5-ft below grade and the water table for laboratory analysis. Soil sample selection was based on field screening using a photoionization detector and/or visual observations.

Soil samples were shipped to Life Science Laboratories for analysis of total RCRA metals, pH, moisture, Target Compound List (TCL) Volatile Organic Compounds (VOCs) by USEPA Method 8260, and TCL Semi-Volatile Organic Compounds (SVOCS) by USEPA Method 8270. Soil samples for Total Organic Carbon (TOC) analysis were shipped to Severn Trent Laboratories in South Burlington, Vermont.

2.2. Groundwater Sample Collection

After soil sampling was completed, thirteen (13) locations were converted into monitoring wells. Six of the monitoring wells were constructed as site perimeter monitoring wells (SWMW-101, SWMW-103, SWMW-104, SWMW-108, RA-112, RA-113). Monitoring well installation and development was completed in accordance with the Work Plan. Groundwater samples were collected from 15 monitoring wells (13 new wells and two existing wells) from August 28, 2007 through August 29, 2004.

Monitoring wells were sampled in accordance with the technologies outlined in the SAP.

Samples were transferred directly from the sampling equipment into the container that has been specifically prepared for the preservation and storage of compatible parameters. Specific information regarding sample bottle and preservation requirements are provided in the QAPP (Appendix D of the RFI Plan).

Groundwater samples were collected utilizing a peristaltic pump and dedicated tubing. Upon collection, samples were labeled according to procedures outlined in the SAP (Appendix C of the RFI Plan) and placed in an ice filled cooler called for by the analysis. Samples were shipped to Life Science Laboratories for analysis of dissolved RCRA metals, pH, TCL SVOCs (by USEPA Method 8270), and TCL VOCs (by USEPA Method 8260).

2.3. FWBE and Release Assessment Analytical Results

Laboratory analytical reports are presented in Appendix C. QA/QC results were acceptable.

2.3.1 Soil Analytical Results

Collected soil samples were analyzed by USEPA Method 8260 for VOCs, USEPA Method 8270 for SVOCs, and RCRA Target Analyte List (TAL) Metals, for both total and dissolved. The analytical results for groundwater samples collected were compared to the USEPA Region III Soil Risk Based Concentration (RBC) standards for both residential and industrial soils.

2.3.1.1 Volatile Organic Compounds in Soil

VOCs were not detected in soil samples above USEPA Region III RBCs for either residential or industrial soils.

2.3.1.2 Semivolatile Organic Compounds in Soil

Four SVOCs were detected above USEPA Region III RBCs for industrial soils, as follows:

	USEPA RBC for
Parameter Parameter	Industrial Soils
Benzo(a)anthracene	3920 ppb
Benzo[a]pyrene	392 ppb
Benzo(b)fluoranthene	3920 ppb
Dibenz(a,h)anthracene	392 ppb
4 1441 4 41 1	

ppb = parts per billion (ug/kg)

The following locations exhibited SVOCs above USEPA Region III RBCs for industrial soils:

Location	Depth Collected*	<u>Parameter</u>	Concentration
SWMU 105	3 to 5 ft bg	benzo(a)pyrene	540 ppb
RA-111	4 to 6 ft bg	benzo(a)anthracene	7100 ppb
RA-111	4 to 6 ft bg	benzo(a)pyrene	4500 ppb
RA-111	4 to 6 ft bg	benzo(b)fluoranthene	8200 ppb
RA-111	4 to 6 ft bg	dibenz(a,h)anthracene	690 ppb
RA-114	3 to 6 ft bg	benzo(a)pyrene	460 ppb

^{*}ft bg - feet below ground surface ppb = parts per billion (ug/kg)

2.3.1.3 Metals in Soil

Analysis for RCRA TAL metals in soil samples did not indicate levels of TAL metals above USEPA Region III RBCs for either residential or industrial scenarios.

2.3.2 Groundwater Analytical Results

Groundwater samples were analyzed by USEPA Method 8260 for VOCs, USEPA Method 8270 for SVOCs, and RCRA TAL Metals, both total and dissolved. Analytical results for groundwater samples

were compared to federal Maximum Contaminant Levels (MCLs) for drinking water. If no MCL is listed for a specific constituent, the result was compared to the USEPA Region III Residential RBCs for drinking water.

2.3.2.1 Volatile Organic Compounds in Groundwater

Four VOCs were detected above USEPA Region III RBCs for residential drinking water, however, three of those constituents were below federal MCLs, as follows:

Location	Parameter	Concentration	Federal MCL	USEPA Region III
	1			RBC
SWMU-102	Benzene	1.03 ppb	5 ppb	0.34 ppb
SWMU-102	Trichloroethene	0.36 ppb	5 ppb	0.026 ppb
RA-112	Tetrachloroethene	0.39 ppb	5 ppb	0.10 ppb
E-MW-15	1,4-Dichlorobenzene	0.54 ppb	none listed	0.28 ppb

ppb = parts per billion (ug/l)

While parameter values were compared to federal MCLs and USEPA Region III RBCs for drinking water, this scenario is unrealistic and ultra conservative, as there are no drinking water wells within a 5-mile radius and groundwater relieves to nearby surface water.

2.3.2.2 Semivolatile Organic Compounds in Groundwater

One location, SWMW-102, demonstrated one SVOC above the federal MCL, and three SVOCs above USEPA Region III RBCs for drinking water, as follows:

Parameter	Federal MCL	USEPA Region III	Concentration SWMU-102
		<u>RBC</u>	3 VV IVI U-102
benzo(a)anthracene	none listed	0.03 ppb	2.0 ppb
benzo(a)pyrene	0.2 ppb	0.003 ppb	1.3 ppb
benzo(b)fluoranthene	none listed	0.30 ppb	2.1 ppb
benzo(k)fluoranthene	none listed	0.30 ppb	0.79 ppb

ppb = parts per billion (ug/l)

While parameter values were compared to federal MCLs and USEPA Region III RBCs for drinking water, this scenario is unrealistic and ultra conservative, as there are no drinking water wells within a 5-mile radius and groundwater relieves to nearby surface water.

2.3.2.3 Metals in Groundwater

Analysis for total and dissolved metals in groundwater did not indicate levels of metals, total or dissolved, above federal MCLs and/or USEPA Region III Residential RBCs for drinking water.

2.4 Groundwater Monitoring

On two separate occasions groundwater monitoring was conducted across the site. Depth to groundwater was measured, and in addition, each location was gauged for the presence of non-aqueous phase liquids (NAPL). NAPL was detected in three locations. The three locations are monitoring wells that were previously existing at the facility prior to the commencement of the RCRA Corrective Action program, and were installed to address a release under the VDEQ Storage

Tank program. This occurrence of NAPL is part of an ongoing investigation under the direction of the VDEQ and therefore will not be addressed as part of the RCRA Corrective Action Program.

A groundwater contour map (Figure 5) was developed for the groundwater elevation measured for the December 26, 2007 event. As depicted in Figure 5, groundwater in the southern half of the site appears to flow westerly towards the Elizabeth River. However, groundwater in the center of the facility and in the northern portion of the facility flows north to northeasterly (inland). This flow regime, while somewhat atypical for sites proximal to surface water, has been documented historically in localized areas of the site.

The hydraulic gradient is estimated to be approximately 0.004 ft/ft. Groundwater flow velocity is estimated to range between 0.0013 ft/day to 12.8 ft/day.

2.5 Conclusions and Summary of FWBE and Release Assessment

Soil and groundwater were evaluated across the site through the installation of 14 soil borings and 13 monitoring well installations. Soil and groundwater were analyzed for VOCs, SVOCs, and metals. The following conclusions are presented based on the sample and analysis of soil and groundwater across the facility during the FWBE and Release Assessment activities:

- 1. Groundwater appears to be flowing westerly towards the adjoining surface water in the southern portion of the site, and north to northeasterly (inland) in the central and northern portions of the site.
- 2. VOCs were not detected in the soil above USEPA Region III RBCs for residential or industrial soils and therefore do not appear to be constituents of concern in soil.
- 3. SVOCs were detected in the soil at three locations, SWMW-105, RA-111, and RA-114 in excess of USEPA Region III RBCs for industrial soil. Further investigation at these areas should be conducted to evaluate whether these detections were localized or if there is a significant occurrence.
- 4. Metals were not detected in the soil above USEPA Region III RBCs for residential or industrial soils across the site and therefore do not appear to be constituents of concern in soil.
- 6. One location (SWMW-102) exhibited one SVOC, benzo[a]pyrene; in the groundwater above the federal MCL and three SVOCs above USEPA Region III RBCs for drinking water.
- 7. No metals, either total or dissolved, were detected in the groundwater above federal MCLs or USEPA Region III RBCs for drinking water, and therefore, metals do not appear to be constituents of concern in groundwater.

8. Based on comparison to MCLs, migration of impacted groundwater at the site appears to be under control.

Based on the analtyical results of the FWBE and Release Assessment investigation, the USEPA requested additional investigation efforts. Three locations, SWMW-102, RA-111, and RA-114 were identified as requiring additional groundwater sampling, to be analyzed for polyaromatic hydrocarbons (PAHs) by USEPA Method 8270 (Selected Ion Monitorin [SIM]). Three locations, SWMW-105, RA-111, and RA-114 were identified as requiring additional soil sampling to delineate the horizontal extent of impact. The sampling efforts and results of these addenda activities are described in the sections that follow.

3. FWBE and Release Assessment Addendum Sampling

Based on the analytical results of the FWBE and Release Assessment, and discussions with the USEPA on May 29, 2008, additional investigation efforts were conducted at the site. Three locations, SWMW-102, RA-111, and RA-114 were identified as requiring additional groundwater sampling. Three locations, SWMW-105, RA-111, and RA-114 were identified as requiring additional soil sampling to delineate the horizontal extent of impact.

3.1 Addendum Groundwater Sampling

One groundwater sample was collected from three monitoring wells: SWMW-102, RA-111, and RA-114. Groundwater samples were collected using a stainless steel bailer or dedicated disposable bailer and in accordance with the Sampling and Analysis Plan (SAP) presented as Appendix C of the RCRA Facility Investigation (RFI) Work Plan developed by O'Brien & Gere in December 2005. Groundwater samples were collected on July 22, 2008 and submitted for laboratory analysis of PAHs by USEPA Method 8270 Selected Ion Monitoring (SIM).

3.2 Addendum Soil Sampling

Three locations were identified as requiring additional soil sampling to delineate the horizontal extent of impact: SWMW-105, RA-111, and RA-114. The vertical extent of impact was demonstrated by the absence of SVOCs in the groundwater at these locations. Soil borings were conducted within 5-ft of the existing monitoring well. At SWMW-105, two soil borings were conducted in the approximate down gradient direction of the previously installed monitoring well. At location RA-114, one soil boring was conducted in the approximate downgradient direction of the previously installed monitoring well. At location RA-111, four soil borings were conducted. During the installation of the first and second soil boring, visual evidence of impact was identified. Two additional soil borings were conducted in the approximate downgradient to evaluate the horizontal extent.

One soil sample from each soil boring was collected for laboratory analysis. The soil samples from the vicinity of SWMW-105 were collected from 3-ft to 5-ft below grade. The soil samples from the vicinity of RA-111 and RA-114 were collected from 4-ft to 6-ft below grade. Soil samples were collected using geoprobe sampling techniques and in accordance with the SAP presented as Appendix C of the RCRA Facility Investigation (RFI) Work Plan developed by O'Brien & Gere in December 2005. Soil samples were collected on July 22, 2008 and submitted for laboratory analysis of PAHs by USEPA Method 8270 SIM.

3.3 Addendum Sampling Results

3.3.1 Addendum Groundwater Sampling Results

One location, SWMU-102, demonstrated seven constituents above comparision criteria. With the exception of Indeno[1,2,3-cd]Pyrene detected in RA-114, constituents detected in RA-111 and RA-114 were below comparison criteria.

<u>Parameter</u>	Federal MCL	USEPA Region	<u>RA-111</u>	<u>RA-114</u>	SWMU-102
In a second Color of the second	!!	III RBC	0.02	0 02 mmh	1.48 ppb
benzo(a)anthracene	none listed	0.03 ppb*	0.02 ppb	0.02 ppb	
benzo(a)pyrene	0.2 ppb	0.003 ppb	ND	ND	1.16 ppb
benzo(b)fluoranthene	none listed	0.30 ppb	ND	0.05 ppb	2.08 ppb
benzo(k)fluoranthene	none listed	0.30 ppb	ND	0.02 ppb	0.81 ppb
Dibenzo[a,h]anthracene	none listed	0.003 ppb	ND	ND	0.15 ppb
Indeno[1,2,3-cd]Pyrene	none listed	0.03 ppb	ND	-0:04 ppb	0.45 ppb
Naphthalene	none listed	0.14 ppb	ND	0.01 ppb	3.11 ppb

^{*}ppb - parts per billion

Indeno[1,2,3-cd]Pyrene was detected at RA-114 only slightly above the USEPA Region III RBC for drinking water, which is an unrealistic and ultra conservative scenario, as groundwater is not used for drinking water at this facility, or within a minimum of 5-miles of the facility. In addition, this consitutent was not detected during previous sampling events. Another sample from this location would be required to assess the validity and significance of this datum.

Based on the groundwater contours presented on Figure 5, SWMW-102 is situated upgradient to sample locations SWMW-101 and SWMW-103. None of the detected constituents were demonstrated at SWMW-101 and/or SWMW-103 above laboratory detection limits. The absence of the detected constituents at downgradient locations suggests that natural processes of dispersion, dilution, and degradation are ongoing, and that impacted groundwater is not migrating off site or beyond these downgradient locations.

3.3.2 Addendum Soil Sampling Results

Analytical results of soils were compared to USEPA Region III RBCs for residential and industrial soils. Since the facility has a history of industrial activies, and the future use of the facility will continue to be for industrial activies, comparison to residential RBCs is considered an unrealistic and ultra conservative scenario. Of the three locations selected for additional investigative sampling (RA-111, RA-114, and SWMU-105), soil samples collected from the vicinity of only one location, RA-111 SB-01, demonstrated a single constituent (benzo(a)pyrene) concentration above USEPA Region III RBCs for industrial soils.

Parameter	RBC for Industrial Soils	RBC for Residential Soils	<u>RA-111</u>			<u>RA-</u> <u>114</u>	SWM	<u>U-105</u>	
			SB01	SB02	SB03	SB04	SB01	SB01	SB02
benzo(a)anthracene	2,100	150 ppb	230	120	33	50	2.4	ND	20
benzo(a)pyrene	210 ppb	15 ppb	240	120	30	43	4.3	ND	20
SB = Soil Boring ppb = parts per billion (ug	SB=Soil Boring								

The analtyical results of the soil borings demonstrate that detected concentrations are limited to a localized area around the previously installed monitoring well. The detection of a single constituent, (benzo(a)pyrene, above the USEPA RBC for industrial soil at RA-111 was demonstrated at the soil boring conducted closest to RA-111(SB01). The concentrations of this constituent decrease with distance from RA-111, in the downgradient direction, to below USEPA RBCs for industrial soils within approximately 25-feet. As such, it appears that this impact is localized.

ND - Non Detect

4. Conclusions

Based on the results of the FWBE and Release Assessment investigation conducted at the Norfolk Ship Repair facility, the USEPA requested additional sampling to be conducted in four areas, as follows:

- Groundwater sampling at SWMW-102, RA-111, and RA-114.
- Soil sampling at SWMW-105, RA-111, and RA-114.

Based on the results of the initial FWBE and Release Assessment investigation, and the results of the additional sampling requested by the USEPA, the following conclusions are presented:

- 1. Groundwater appears to be flowing westerly towards the adjoining surface water in the southern portion of the site, and north to northeasterly (inland) in the central and northern portions of the site.
- 2. VOCs were not detected in the soil above USEPA Region III RBCs for residential or industrial soils and therefore do not appear to be constituents of concern in soil.
- 3. SVOCs were detected in the soil at three locations, SWMW-105, RA-111, and RA-114 in excess of USEPA Region III RBCs for industrial soil. Further investigation at these areas demonstrated that these detections were of localized horizontal and vertical extent.
- 4. Metals were not detected in the soil above USEPA Region III RBCs for residential or industrial soils across the site and therefore do not appear to be constituents of concern in soil.
- 5. VOCs were not detected in the groundwater, above MCLs with one exception: 1,4-Dichlorobenzene was detected E-MW-15. This location is being addessed under a State remediation program, and therefore will not be addressed under the RCRA Corective Action program.
- 6. One location (SWMW-102) exhibited one SVOC, benzo[a]pyrene, in the groundwater above the federal MCL and three SVOCs above USEPA Region III RBCs for drinking water. Further investigation of these parameters demonstrated that while SVOCs are present at SWMW-102, the extent is limited. The absence of the detected constituents at downgradient locations suggests that natural processes of dispersion, dilution, and degradation are ongoing, and that impacted groundwater is not migrating off site or beyond these downgradient locations.
- 7. During—the—additional—sampling—at—SWMW-102_requested_by_the_USEPA,_one_SVOC,_indeno[1,2,3-cd]Pyrene, was detected only slightly above the USEPA Region III RBC for drinking water. Drinking water RBCs are an unrealistic and ultra conservative scenario, as groundwater is not used for drinking water at this facility, or within a minimum of 5-miles of the facility. This consitutent was not detected during the initial FWBE and Release Assessment sampling event. Another sample from this location would be required to assess the validity and significance of this datum.

- 8. No metals, either total or dissolved, were detected in the groundwater above federal MCLs or USEPA Region III RBCs for drinking water, and therefore, metals do not appear to be constituents of concern in groundwater.
- 9. Based on comparison to MCLs, migration of impacted groundwater at the site appears to be under control.
- 10. Based on the completion of the FWBE and Release Assessment investigation, and addendum activities, the following SWMU/AOCs are recommended for "no further action":

SWMU/ AOC#	SWMU/AOC Name	Rationale for "No Further Action"		
1	Closed hazardous waste container storage area	Area achieved "clean closure" as approved by VDEQ on February 20, 1997		
2	Hazardous waste accumulation area	Soil and groundwater (RA-112) sampling results from FWBE and Release Assessment indicate no constituents of concern.		
3A	Chrome plating hazardous waste satellite accumulation site (SAS)	Located inside Bldg. 101 on bermed concrete floor slab; no cracks in floor; no evidence of release		
3B	Former scrap yard hazardous waste SAS	Soil and groundwater (RA-109) sampling results from FWBE and Release Assessment indicate no constituents of concern.		
3C	Machine Shop Parts Washer	Parts washer is closed loop; only non-haz aqueous-based;no releases; RCRA exclusion 40CFR264.4(a)8(i)		
3D	Tool Room Parts Washer	Parts washer is closed loop; only non-haz aqueous-based;no releases; RCRA exclusion 40CFR264.4(a)8(i)		
3E	Crane Maintenance parts Washer	Parts washer is closed loop; only non-haz aqueous-based;no releases; RCRA exclusion 40CFR264.4(a)8(i)		
3F	Rigger Room Parts Washer	Parts washer is closed loop; only non-haz aqueous-based;no releases; RCRA exclusion 40CFR264.4(a)8(i)		
3G	Former Machine Shop Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)		
3H	St. Helena Annex Parts Washer	Parts washer is closed loop; only non-haz aqueous-based;no releases; RCRA exclusion 40CFR264.4(a)8(i)		
4	Compressor Room USTs	Being addressed under VDEQ Storage Tank Program (PC 98-2215) and participating in State Tank Reimbursement Fund		
5	Compressor Room Oil/Water Separator	Area to be addressed under State VDEQ program		
6	Waste Oil Slop Tanks	ASTs in good condition; Secondary containment; no cracks in containment; no evidence of release		
7	WWTS and Sludge dumpster	WWTS regulated under Clean Water Act; Engineering controls on dumpster; no evidence of release		
8	VPDES outfalls	Regulated under Clean Water Act; RCRA exclusion 40CFR261.4(a)2		
9	Former Concrete Tanks	Was previously addressed under VDEQ Storage Tank Program (PC 98-2296) and achieved closure in 2007 by VDEQ.		
10	Scrap Yard	No evidence of release; RCRA exclusion 40CFR261.4(a)13		
11	Scrap Yard Spent Blast Grit Hut	Soil sampling results from FWBE and Release Assessment indicates no constituents of concern.		
12A	Chrome Plating Scrubber Air stack	No evidence of release; regulated under Title V of Clean Air Act, no violations.		
12B	Former Steam Boiler	Previously addressed under VDEQ Storage Tank Program and achieved closure in 2008 by VDEQ.		
12C	Two Steam Boilers	No waste; Regulated under VDEQ Storage Tank Program and Title V of Clean Air Act; no violations; no evidence of a release		
12D	Compressor Boiler Room	No waste; Regulated under VDEQ Storage Tank Program and Title V of Clean Air Act; no violations; no evidence of a release		
13	Water Front Area - Piers and drydocks	No evidence of a release; engineering controls in place to prevent releases; no waste managed		

14	Blasting and painting	Soil sampling results from FWBE and Release Assessment indicates no
	enclosures/pads	constituents of concern.
15	Old spent blast storage area	No evidence of a release; BAE no longer active at site; Current owner responsible for condition
16	Old scrap yard	No hazardous waste or materials managed; no evidence of release; RCRA exclusion 40CFR261.4(a)13; current owner occupied for 20 yrs.
17	Former asbestos containment rolloff	Engineering controls in place prevented release; area inspected by State Certified Inspector and found no evidence of release; removed 1997/98
18	Former silver recovery unit.	Closed loop system; inside building; no incident of releases; removed in 1997/98; RCRA exclusion 40CFR264.4(a)8(i)
19A	Carpentry shop	Non-hazardous operations; no hazardous or RCRA constituents used, stored, treated, or released; no opacity violations
19C	Paint Booth	Soil sampling and groundwater (RA-106) from FWBE and Release Assessment indicate no constituents of concern.
19D	Wheelabrator	Soil sampling and groundwater (RA-106) from FWBE and Release Assessment indicate no constituents of concern.
20	Former outdoor small parts blasting/painting area	Soil sampling and groundwater (RA-111 and RA-114) from FWBE and Release Assessment indicates no constituents of concern.
21	Trash dumpsters and port-a-	Only municipal waste managed; no hazardous waste or constituents used, stored, treated, or released

BAE Systems Norfolk Ship Repair RCRA Facility Lead Program

SWMU/	Location	SWMU / AOC Name	Status
AOC No.	Location		<u> </u>
1	Paint Waste Bldg.	Closed Haz Waste Container Storage Area	Closed
2	Bidg. 622	Haz Waste Accumulation Area	Closed
3 A	Bldg. 101	Chrome Plating Haz Waste SAS	Active
3 B	Navy Parking Lot	Former Scrap Yard Haz Waste SAS	Closed
3 C	Bldg. 101	Machine Shop Parts Washer	Active
3 D	Bldg. 205	Tool Room Parts Washer	Active
3 E	Bldg. 528	Crane Maintenance Parts Washer	Closed
3 F	Bldg. 513	Rigger Room Parts Washer	Closed
3 G	Bldg. 616	Former Machine Shop Parts Washer	Closed
3 H	Former Bldg. 621	StHA Former Flush Shop Parts Washer	Closed
4	Bldg. 513	Compressor Room USTs	Closed
5	Bldg. 513	Compressor Room O/W Separator	Active
6	Bldg. 527	AST Farm	Active
7	Bldg. 513	WW Treatment System & Sludge Dumpster	Active
8		VPDES Outfalls	
9	Bldg. 616	Former Concrete Tanks	Closed
10	Navy Parking Lot	Former Scrap Yard	Closed
11	Navy Parking Lot	Scrap Yard Spent Blast Grit Hut	Closed
12 A	Bldg. 101	Chrome Plating Scrubber Air Stack	Active
12 B	Pier No. 1	Former Steam Boiler	Closed
12 C	Bldg. 301	Two Steam Boilers	Active
12 D ·	Bldg. 513	Compressor Room Two Steam Boilers	Active
13	Water Front	Piers and Drydocks	Active
14	Bldg. 550	Blasting and Painting Enclosures/Pads	Active
15	Near Former Bldg. 622	StHA Former Spent Blast Storage Area	Closed
16	Near Former Bldg. 621	StHA Former Scrap Yard	Closed
17	Bldg. 625	Former Asbestos Containment Rolloff	Closed
18	Bldg. 424	Former Silver Recovery Unit	
19 A	Bldg. 513	Carpentry Shop	Active
19 B	Bldg. 202	Blacksmith Shop	—Active
19 C	Bldg. 514	Paint Booth	Inactiv
19 D	Bldg. 514	Wheelabrator	Closed
20	Blocking Equipmt Storage Area	Former Outdoor Small Parts Blasting/Painting Area	Closed
21	Yard Wide	Trash Dumpsters and Portapotties	Active

Notes:

- 1. Haz Hazardous
- 2. SAS Satelite Accumulation Site
- 3. StHA St. Helena Annex
- 4. USTs Underground Storage Tanks
- 5. ASTs Aboveground Storage Tanks
- 6. WW Wastewater
- 7. Bldg. Building
- 8. SWMU Solid Waste Management Unit
- 9. AOC Area of Concern

BAE Systems Norfolk Ship Repair RCRA Facility Lead Program

Table 1-2. List of SWMUs/AOCs Selected for No Further Action (NFA)

SWMU/ AOC No.	SWWU //AUC Name	Rationale for No Further Action (NFA)
1	Closed Haz Waste Container Storage Area	Area achieved "clean closure" as approved by VDEQ on February 20, 1997
	Chrome Plating Haz Waste SAS	Located inside Bldg. 101 on bermed concrete floor slab; no cracks in floor; no evidence of release
3 C	Machine Shop Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)
3 D	Tool Room Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)
3 E	Crane Maintenance Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)
3 F	Rigger Room Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)
3 G	Former Machine Shop Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)
3 H	StHA Former Flush Shop Parts Washer	Parts washer is closed loop; only non-haz aqueous-based; no releases; RCRA exclusion 40CFR264.4(a)8(i)
4	Compressor Room USTs	Being addressed under VDEQ Storage Tank Program (PC 98-2215) and participating in State Tank Reimbursement Fund
6	Waste Oil Slop Tanks	ASTs in good condition; Secondary containment; no cracks in containment; no evidence of release
7	WWTS and Sludge dumpster	WWTS regulated under Clean Water Act; Engineering controls on dumpster; no evidence of release
8	VPDES outfalls	Regulated under Clean Water Act; RCRA exclusion 40CFR261.4(a)2
9	Former Concrete Tanks	Being addressed under VDEQ Storage Tank Program (PC 98-2296) and participating in State Petroleum Tank Reimbursement Fund
10	Scrap Yard	No evidence of release; RCRA exclusion 40CFR261.4(a)13
12 A	Chrome Plating Scrubber Air Stack	No evidence of release; regulated under Title V of Clean Air Act, no violations
12 B	Former Steam Boiler	Addressed under VDEQ Storage Tank Program and participating in State Tank Reimbursement Fund
12C	Two Steam Boilers	No waste; Regulated under VDEQ Storage Tank Program and Title V of Clean Air Act; no violations; no evidence of a release
12D	Compressor Boiler Room	No waste; Regulated under VDEQ Storage Tank Program and Title V of Clean Air Act; no violations; no evidence of a release
13	Water Front Area - Piers and drydocks	No evidence of a release; engineering controls in place to prevent releases; no waste managed
15	Old Spent Blast Storage Area	No evidence of a release; BAE no longer active at site; Current owner responsible for condition
16	Old Scrap Yard	No hazardous waste or materials managed; no evidence of release; RCRA exclusion 40CFR261.4(a)13; current owner occupied for 20 yrs.
17	Former Asbestos Containment Rolloff	Engineering controls in place prevented release; area inspected by State Certified Inspector and found no evidence of release; removed 1997/98
18	Former Silver Recovery Unit	Closed loop system; inside building; no incident of releases; removed in 1997/98; RCRA exclusion 40CFR264.4(a)8(i)
19 A	Carpentry Shop	Non-hazardous operations; no hazardous or RCRA constituents used, stored, treated, or released; no opacity violations
21	Trash Dumpsters and Portapotties	Only municipal waste managed; no hazardous waste or constituents used, stored, treated, or released
	Haz - Hazardous	6. WW - Wastewater

- 2. SAS Satelitte Accumulation Site
- 3. StHA St. Helena Annex
- 7. Bldg. Building
- 8. SWMU Solid Waste Management Unit
- 4. USTs Underground Storage Tanks
- 9. AOC Area of Concern

5. ASTs - Above Ground Storage Tanks

BAE Systems Norfolk Ship Repair RCRA Facility Lead Program

Table 1-3. SWMUs/AOCs Selected for Further Sampling, Sampling Media, and COPCs

SWMU/ AOC No.	SWMU/AUC Name	Proposed Sample Type(s)	Waste Managed	COPCs (Analytical Methods)
2	Haz Waste Accumulation Area	8 soil (four from 0 - 6 inches; four from just above water table); l groundwater	Oils (petroleum hydrocarbons); paints	total and dissolved TAL metals; VOCs; SVOCs
3 B	Former Scrap Yard Haz Waste SAS	4 soil (two from 0-6 inches; two from just above water table); 1 groundwater	Oils (petroleum hydrocarbons); paints; metal	total and dissolved TAL metals; VOCs; SVOCs
5	Compressor Room O/W Separator	I groundwater (use existing well)	Oils (petroleum hydrocarbons)	VOCs; SVOCs; TAL metals
11	Scrap Yard Spent Blast Grit Hut	1 soil (two from 0-6 inches bg)	spent blast grit (metals, paint chips)	Total and TCLP TAL metals; SVOCs
14	Blasting and Painting Enclosures/Pads	2 soil (from 0-6 inches bg)	spent blast grit (metals, paint chips)	Total and TCLP TAL metals; VOCs; SVOCs
19 B*	Blacksmith Shop	2 soil (from 0-6 inches bg)*	petroleum hydrocarbons	VOCs; SVOCs*
19 C	Paint Booth	1 soil (from 0-6 inches bg)	spent blast grit (metals); paint	Total and TCLP TAL metals; VOCs
19 D	Wheelabrator	1 soil (from 0-6 inches bg)	spent blast grit (metals, paint)	Total and TCLP TAL metals; VOCs
20	Former Outdoor Small Parts Blasting/Painting Area	2 soil (from 0-6 inches bg); 1 groundwater	spent blast grit (metals); paint	Total and TCLP TAL metals; VOCs

Notes: Haz = Hazardous

SVOCs = Semi-Volatile Organic Compounds by USEPA Method 8270

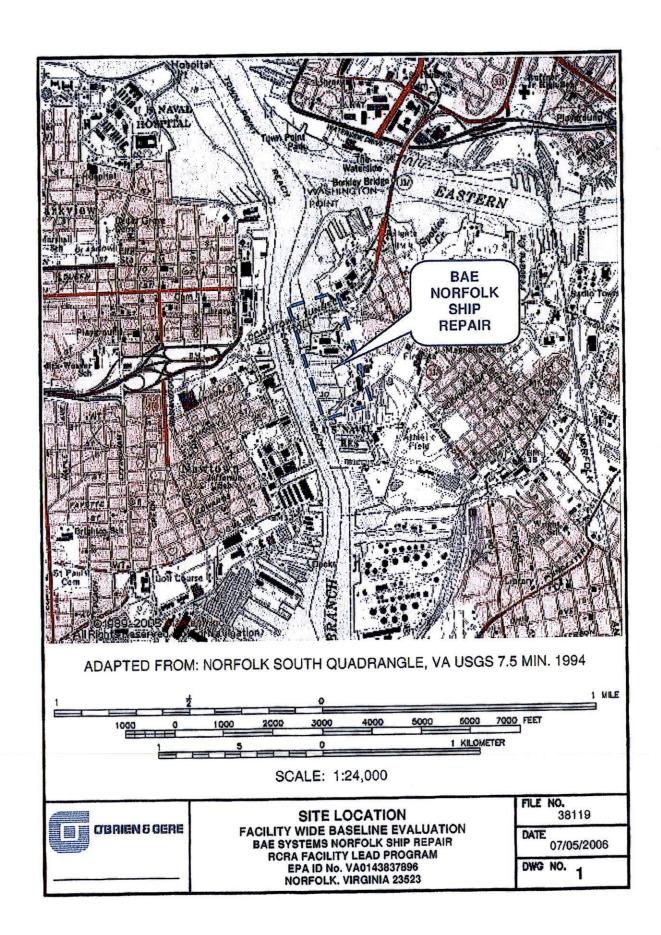
SAS = Satelite Accumulation Site

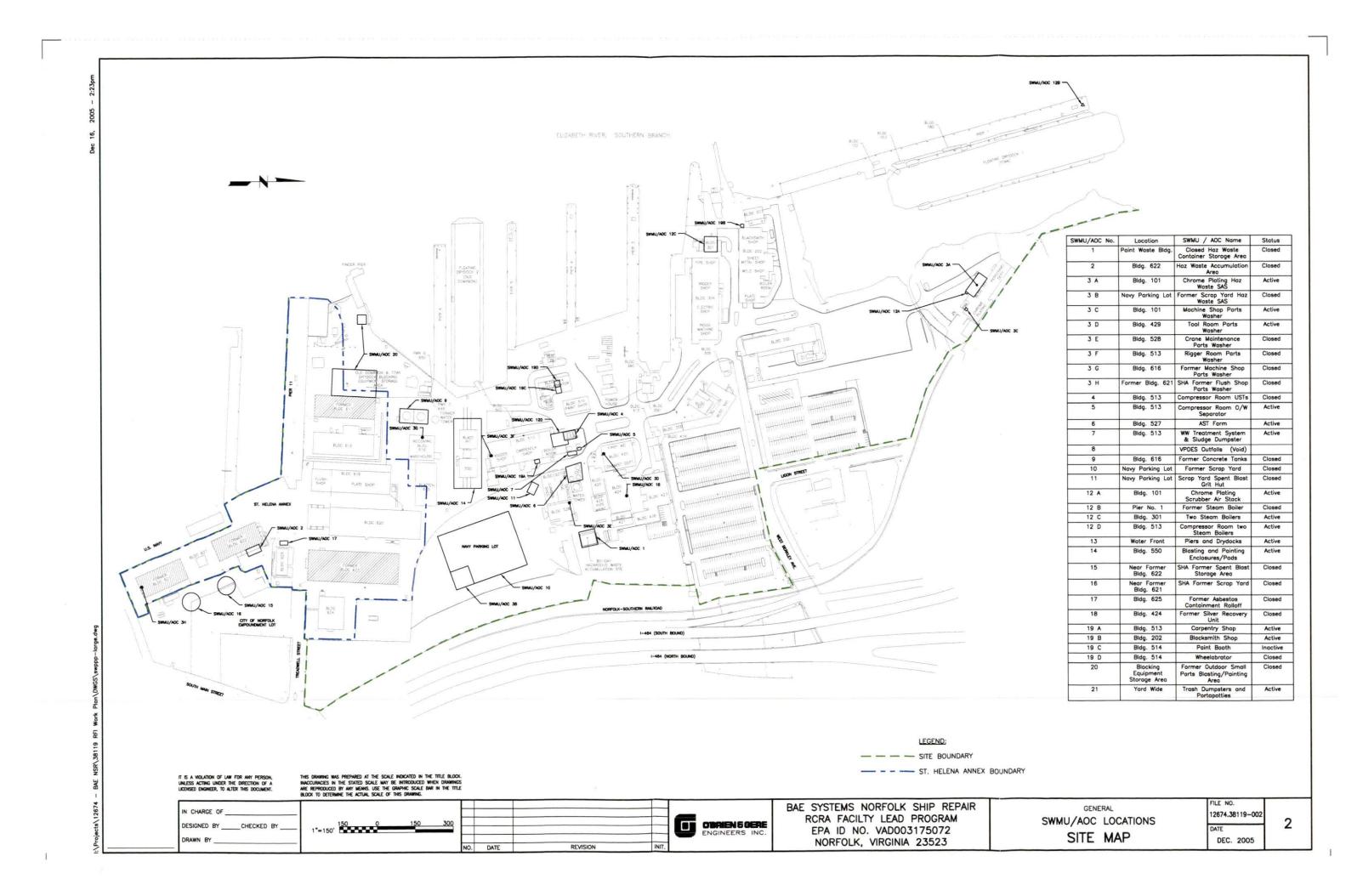
VOCs - Volatile Organic Compounds by USEPA Method 8260

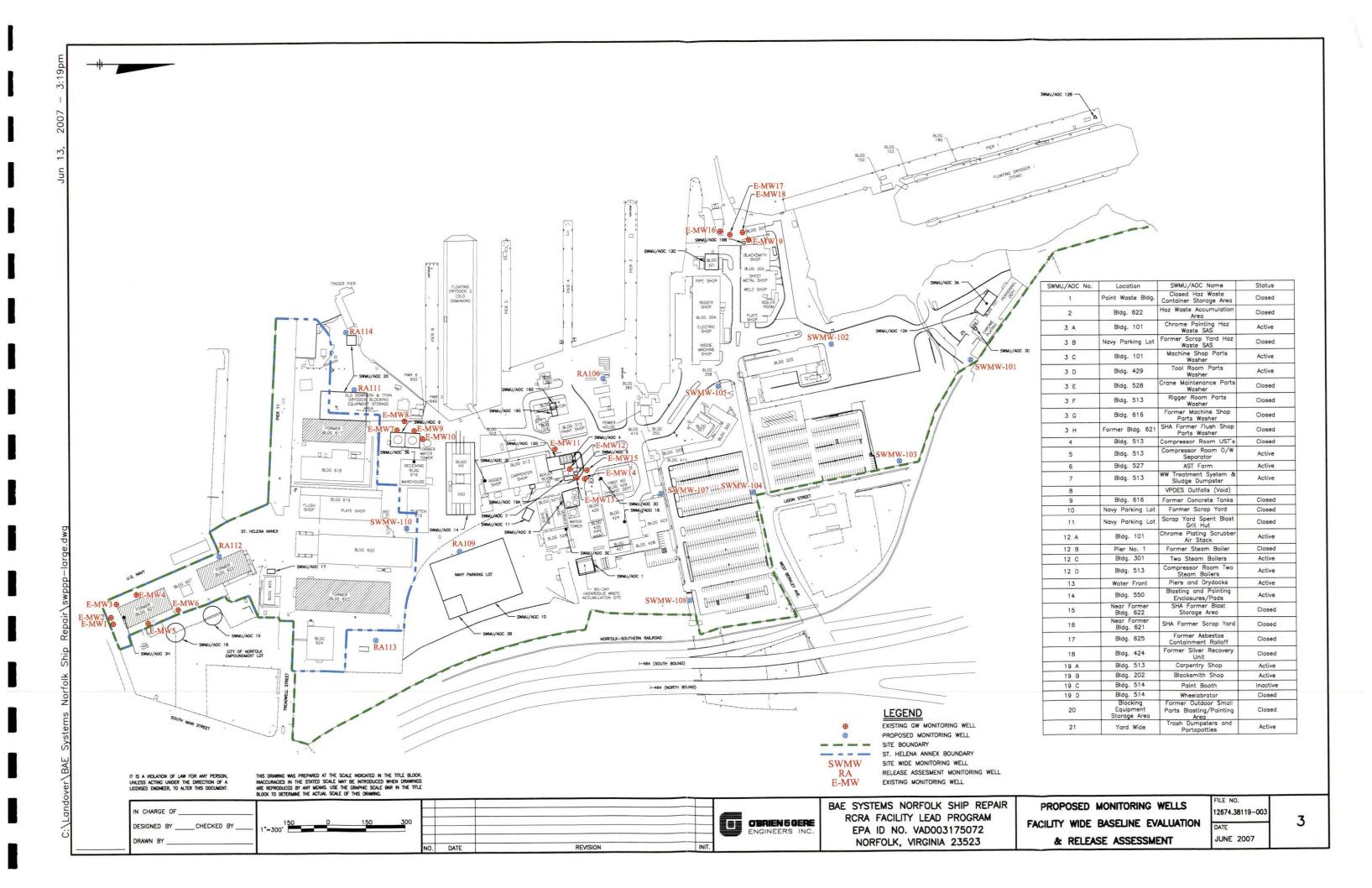
SWMU = Solid Waste Management Unit TAL - Target Analyte List

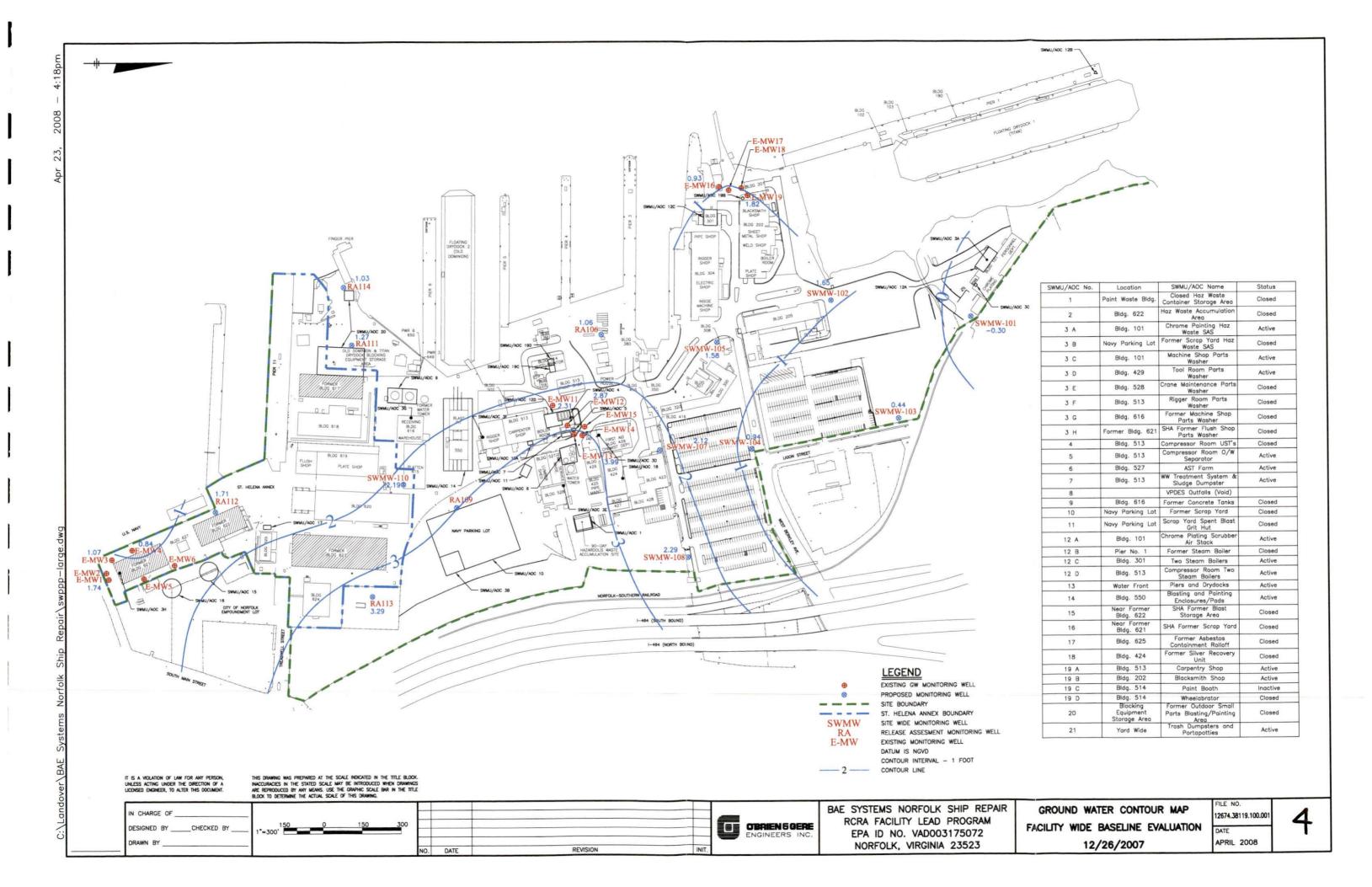
AOC = Area of Concern

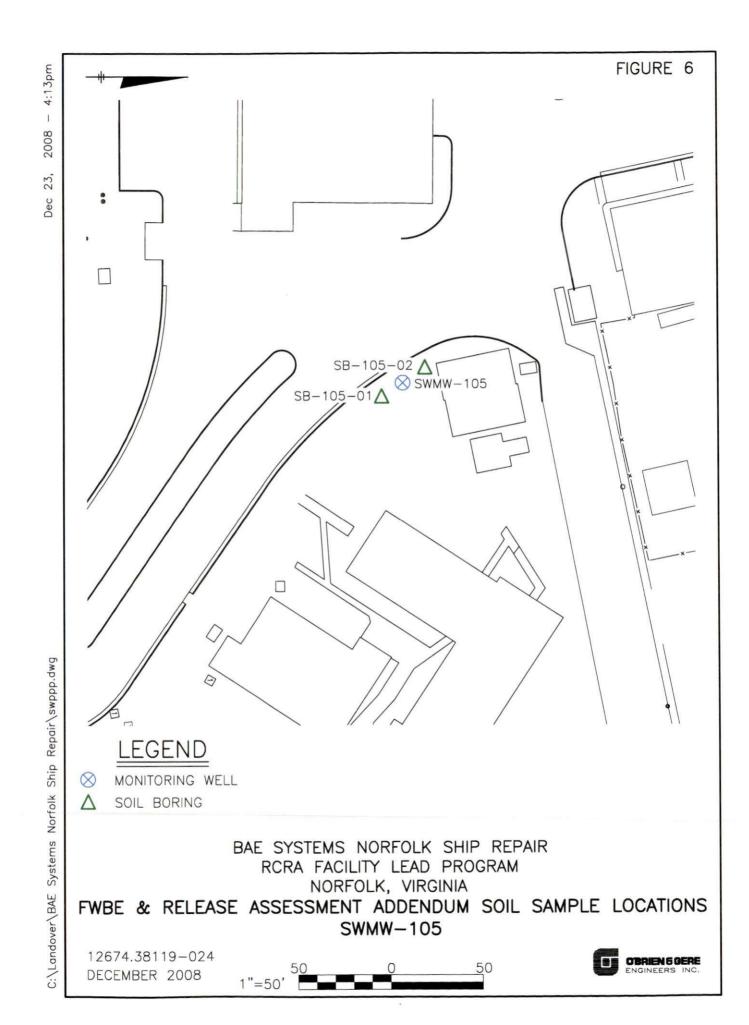
TCLP = Toxic Characteristic Leaching Proceedure


0-6 inches below surficial gravel, where


COPC = Constituents of Potential Concern


present


Samples collected from deeper than 6 inches bg will be based on field screening


* - Assessment in this area has been postponed until further notice, per USEPA April 2007 site visit

APPENDIX A

Records of Subsurface Exploration

Addendum Soil Sampling Logs

O'BRI	EN	& GER	E EN(GINEERS, INC.	Subsurface Investigation Record		BORING LOG SB-105-01		
Proj. Lo File No. Drilling Forema	c.: : Com	38119.1 pany:	ISR W. 100.001 Fishbu Eric No	Berkley Ave. urne Drilling, Inc. eace	Rig: Geoprobe Model 5410 100IS: 4' x 2" Macrocore Sampler Well Borehole: 3 "	Page 1 of Location: Sampled: Well Instal Screen Riser	5 Ft. North Well SWMI 7/22/20	U-105 008 0914 H e \ \ Grout Sand	Irs. Pack
Depth Below		Sam	ple Rec.	d Lawrence	Sample / Unit Description		Stratum Change General	Soil Samples	PID
Grade 0	No.	(teet) 0.0 - 2.0	(teet) 1.9				Descript	89	
				1					
0.5				1					
				1					
1.0									
				CAND work fine to fine	inad with some fine to madium; black (Gla	4			
				2.5/N) grading (e grained, with some fine to medium; black (Gle downward to light gray (10YR 7/2); scattered sr	nall	SP		
1.5					nite gravel to 0.05'; isolated brick fragments; slig grass and root zone at top; abundant coal grave				
				Material.	SECTION TRANSPORTED AND ADDRESS OF THE PROPERTY OF THE PROPERT				
				1					
2.0	2	2.0 - 5.5	3.4	-					
		2.0 0.0	0.1	1					
				1					
2.5				1					
				1				*	
	-		-	1					
3.0	二			1					
				1					
				-					
3.5			二	1					
				1					
					e grained; reddish black (2.5YH 2.5/1) grading ard to pinkish gray (5YR 6/2); some very fine-gr	rained	SM		
4.0				heavy m	ninerals; organic material and rootlets top 0.6'; i	moist			77
-11.5	+-	-		to damp	<u>).</u>			1	
	\vdash			1				X	
4.5				-				//	
4.0				1				4	7
	×	Soil Sam	ple SB-1	05-01-SL01					

BORING LOG SB-105-01

O'BRIEN & GERE ENGINEERS, INC. Location: 5' North of Monitoring

Well SWMU-105

Page 2 of 2

File No: 38119.100.001

					Well SWIND-105				
Depth Below Grade	No.	Sam Depth (feet)			Sample / Unit Description		Stratum Change General Descript	Soil Samples	PID (ppm)
Graue	140.	(IGGI)	(leet)						
									3.2
5.0				SILTY SAND			SM		
	-								
5.5	_				Total Depth 5.5 Ft.				
				1	·				
6.0									
	-								
6.5				1					
			-	1					
	-		-			nd mente moves month armin	$\perp V_{\perp}$		
7.0	-			-					
7.0				1					
	\pm			1					
	-			4					
7.5				1					
	+-	-	-	-					
				1					
8.0	-		1	1					
]					
				1					
8.5			-						
				1					
	-	-	-	-					
9.0				1					
1875				-					
	-			7					
0.5				_					
9.5				-					
				_					
	1			4					
10.0				1		r Chart Descrip			

Munsell Color Chart Description

Approximate Groundwater Level 12/26/2007

O'BRI	EN	& GER	E EN(GINEERS, INC.	Subsurface Investigation Record	BORING LOG SB-105-02					
Proj. Lo File No.: Drilling Forema	c.: .: Com	38119.1 pany:	ISR W. 00.001 Fishbu Eric Ne	Berkley Ave. urne Drilling, Inc. eace	Rig: Geoprobe Model 5410 10018: 4" x 2" Macrocore Sampler Well Borehole: 3 "	Page 1 of 2 Location: 5 Ft. South of Monitoring Well SWMU-105 Sampled: 7/22/2008 0943 Hrs. Well Installed: None Screen = \ Grout Riser \ Grout Bentonite			Irs. Pack		
Depth Below Grade		Sam	ple	d Lawrence	Sample / Unit Description		Stratum Change General Descript	Soil Samples	PID		
0.5	1	0.0 - 2.0	2.0	(5YR 3/1) gradi small quartz gra	e grained, with some fine to medium; very dark or ing downward to grayish brown (10YR 5/2); sca avel to 0.03'; isolated brick fragments; slightly so nd root zone at top; Fill Material.	ttered	SP				
1.5					The second of the second secon						
2.0	2	2.0 - 5.5	3.1	The state of the s	tn some fine to medium; gray (10YH 6/3); clean ed; dry; Fill Material.	SP					
3.0				to very	very tine grained; black (Gley 1 2.5/N) grading o dark gray (10YR 3/1) and then gray (10YR 6/1); avel to 0.02'; dry; Fill Material.		PT SM				
3.5					coal gravel to 0.02'; dry; Fill Material.						
4.0					adisn gray (5YH 4/2); decreasing clay with dept il 0.5', very fine grained; iron oxide staining; sca s.		CL	X			
4.5	F]		0		<u></u>	4		
	×	Soil Sam	ple SB-1	05-02-SL01							

BORING LOG SB-105-02

O'BRIEN & GERE ENGINEERS, INC. Location: 5' South of Monitoring

Well SWMU-105

Page 2 of 2

File No: 38119.100.001

Depth Below		Sample		Well divinio 166	Stratum Change	Soil	PID
Below Grade	No.	Depth (feet)	Rec. (teet)	Sample / Unit Description	General Descript	Samples	
				SILTY CLAY	CL		1.3
5.0							
				SANDY CLAY - very tine grained; gray (באר 6/1); iron oxide staining; moist.	CL		
5.5				Total Depth 5.5 Ft.			
6.0							
6.5							
7.0							
7.0							
				-			
7.5							
	-			1		*	
8.0				-			
				-			
8.5				1			
				1			
				1			
9.0	上			1			
		 		1			
9.5	+						
				_			
				_			
10.0	-			_			

Munsell Color Chart Description

Approximate Groundwater Level 12/26/2007

O'BRIEN & GERE ENGINEERS, INC. Subsurface Investigation Record							BORING LOG SB-111-01			
Proj. Lo File No.	oc.: .:	38119.1	ISR W.	Berkley Ave.	Rig: Geoprobe Model 5410 1 oois: 4° x 2° Macrocore Sampier Well Borehole: 3 "		5 Ft. South of Monitoring Well RA-111 npled: 7/22/2008 1205 Hrs. II Installed: None			
Drilling Forema OBG Ge	ın:		Eric N	urne Drilling, Inc. leace ad Lawrence		Screen Riser	=	\ Grout Sand Bento	Pack	
Depth Below Grade		Sam	ple		Sample / Unit Description	1	Stratum Change General Descript	Soil Samples	PID (ppm)	
0.5	1	0.0 - 3.0		SANU and GHAVEL - I	and GHAVEL - Tine to very coarse grained; granite gravel to 0.03°; very pale brown (10YR 7/3); loose; dry; Road Bed.					
1.5				PRINCIPLE DIVIDIS INC. BUT DOCUMENTS	arse grained; greenish gray (Gley 1 5/5GY); rel and brick fragments; dry; slight odor; Fill Mat	terial.	SP			
2.0				SILTY SAND - fine grai	ILTY SAND - fine grained; very dark grayish brown (2.5Y 3/2); odor.					
				SANDY SILT - very dar	SANDY SILT - very dark grayish brown (10YR 3/2); fine grained; slightly clayey.					
2.5				COAL			PT			
20				BRICK						
3.0	2	3.0 - 7.0	4.9	The second of the second of the second	e grained; very dark grayish brown (101H 3/2); nt coal and brick fragments; dry; loose.		SM			
4.0					very tine grained; dark gray (10YH 4/1); brick fra n basal portion.	agments;	SM		3.8	
4.5				grained;	ve gray (5Y 3/2); stiff to very stiff; slightly sandy l; slight odor; fuel oil LNPL in numerous rootlet h .6 ppm PID from scan of core.		CL			

BORING LOG SB-111-01

O'BRIEN & GERE ENGINEERS, INC. Location: 5' South of Monitoring File No: 38119.100.001

Well RA-111

Page 2 of 2

Depth	Sample		ple						Soil	PID
Below Grade	No.	Depth (feet)	Rec.			Sample / Unit Description	=	Change General Descript	Samples	(ppm)
5.0								-	\/	
									/X	
				SILTY CLAY		re gray (5Y 3/2); stiff to very stiff; slightly sandy slight odor; fuel oil LNPL in numerous rootlet l		CL	<u> </u>	
5.5						6 ppm PID from scan of core.	10100,			27.7
6.0										
0.0										
				SANUY SILI	- very tine	e grained; dark gray (10YH 4/1); medium dens	e; siigntiy			
6.5				1	clayey; s	slight odor; isolated fuel oil; abundant rootlet ho	oles; iron	SM		
				1						
				1						
7.0	-					Total Depth 7.0 Ft.				
	-			1						
				1						
7.5				1						
				1						
8.0	\vdash			1						
	\pm			}						
	+			-						
8.5	_			1						
			-	1						
				1						
9.0				_						
				_				== == =		
0.5				-						
9.5		-		7						
				1						
10.0				_						
Notes:						Munagli Cal	or Chart Descri	otion		

Munsell Color Chart Description

Groundwater Level 07/22/2008

O'BRIEN & GERE ENGINEERS, INC.					Subsurface Investigation Record	BORING LOG SB-111-02			
Client:	BAE	System	s / NSI	R	Rig: Geoprobe Model 5410	Page 1 of 2 5 Ft. West of Monitor			ng
		(5)		Berkley Ave.	100IS: 4" X 2" WacroCore Sampler	Location:	1	1	
File No.:		38119.1		Derkiey Ave.	Well Borehole: 3 "	Sampled: Well Insta		008 1205 H e	rs.
Drilling	Com	pany:	Fishbu	irne Drilling, Inc.		Screen		\ Grout	
Foremai			Eric No	eace d Lawrence		Riser		Bento	
Depth		Sam	ple				Stratum Change	Soil	PID
Below		Depth	Rec.		Sample / Unit Description		General	Samples	
Grade 0	No.	(teet) 0.0 - 3.0	(teet) 3.1				Descript		
U	1	0.0 - 3.0	3.1						
0.5									
				SAND and GRAVEL -	rine grained; granite gravel to 0.03; very pale b	rown	SP		
1.0					/3); loose; dry; Road Bed.		01		
1.0									
1.5									
					3				
2.0									
				אאט - tine grained; gi	rayısn prown (104H 5/2); apundant gravei; coa	SP			
				fragments; slig	ght odor; dry; loose.				
2.5				-					
				SILTY SAND - very fin-	e grained, isolated very coarse; yellowish brow	n	SM		
3.0	2	3.0 - 7.0	3.7	(10YR 5	5/4); slightly clayey; dry; slight odor.				
		0.0 7.0	5.1	1					
	-			 					
3.5				1					
				1					
	-	-		SILTY CLAY - dark oli	ve gray (5Y 3/2); stiff to very stiff; slightly sandy	, very fine			
4.0				grained	; slight odor; fuel oil LNPL in numerous rootlet	holes.			
	-	-	-	1				1	
				1				I X	
4.5				1				(
4.5	\vdash		-	-				><	
	X	Soil Sam	ple SB-1	11-02-SL01	Groundwater L	evel 07/22/200	08		

BORING LOG SB-111-02

Location: 5' West of Monitoring

Well RA-111

Page 2 of 2

File No: 38119.100.001

Depth Below		Sam Depth	Rec.	Sample / Unit Description	Stratum Change General	Soil Samples	PID (ppm)
Grade	No.	(teet)	(teet)		Descript	><	
5.0				SILTY CLAY - dark olive gray (5Y 3/2); stiff to very stiff; slightly sandy, very fine			
				grained; slight odor; fuel oil LNPL in numerous rootlet holes.		/X\	
5.5							
6.0							
6.5				אובו ז אמאט - זוחפ and very זוחפ grained; dark gray (פונו א 4/1); good sorting; medium dense; slightly clayey; slight odor; isolated fuel oil; abundant rootlet holes; iron oxide mottling.	ML		5.5
				abundant rootiet notes, non oxide motting.			
7.0				Total Depth 7.0 Ft.			-
	+			Total Sopal 7,5 Ya			
7.5	\vdash						
	1						
8.0							
				-			
8.5	F						
9.0							
	+						
9.5	F						
	+						
10.0							

Notes:

O'BRI	EN	& GER	E EN	GINEERS, INC.	Subsurface Investigation Record		BORING LOG SB-111-03		
Proj. Lo File No. Drilling	c.: : Com	38119.1 pany:	SR W. 00.001 Fishbu	Berkley Ave.	Rig: Geoprobe Model 5410 10018: 4" x 2" Macrocore Sampler Well Borehole: 3 "	Location: Well RA-111 Sampled: 7/22/2008 1220 Hrs Well Installed: None Screen = \ Grout			irs.
Forema OBG Ge			Eric No	eace d Lawrence		Riser		Sand Bento	
Depth Below Grade	No.	Sam Depth (feet)			Sample / Unit Description	-	Stratum Change General Descript	Soil Samples	PID (ppm)
0.5	1	0.0 - 3.0	2.3						
1.0					nne grained; granite gravei to 0.03°; very paie bi /3); loose; dry; Road Bed.	rown	SP		
1.5				SAND - tine grained: ve	ery dark gray (10ΥΗ 3/1); scaπered gravel and t	DTICK	SP		
2.0					ts; dry; oil stained; Fill Material.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SP		
2.5				SANU -very tine grained	a; wnite (Giey 1 8/N); ary; loose; slight oaor.		SP		
3.0	2	3.0 - 7.0	3.5	PRODUCTION OF THE PROPERTY OF	e grained; very dark grayish brown (10ҮН 3/2) t /1); abundant quartz and coal gravel; oil stained		SM		137
3.5					ery pale brown (10YH //4) to dark grayish brow sal gravel; slight odor.	n	SP		
4.5					re gray (5 Y 3/2); stιπ to very stιπ; slightly sandy, slight odor; fuel oil LNPL in abundant rootlet he		CL		
		1					1	1	

BORING LOG SB-111-03

Location: 15' South of

Monitoring Well RA-111

Page 2 of 2

File No: 38119.100.001

Strattum Sample PID Depth Change Soil Samples (ppm) Below Depth | Rec. Sample / Unit Description General Grade (teet) (teet) Descript 5.0 SILTY CLAY - dark olive gray (5Y 3/2); stiff to very stiff; slightly sandy, very fine CL 74.7 grained; slight odor; fuel oil LNPL in numerous rootlet holes. 5.5 6.0 6.5 183 SANDY SILI - very fine grained; color as above; few rootlets; clayey; slight odor; fuel oil LNPL in numerous rootlet holes. 7.0 Total Depth 7.0 Ft. 7.5 8.0 8.5 9.0 9.5 10.0

votes:

X

Munsell Color Chart Description

Groundwater Level 07/22/2008

O'BRI	EN	& GER	E EN	GINEERS, INC.	Subsurface Investigation Record		BORING LOG SB-111-04		
Client: BAE Systems / NSR Proj. Loc.: BAE / NSR W. Berkley Ave. File No.: 38119.100.001 Drilling Company: Fishburne Drilling, Inc.					Rig: Geoprobe Model 5410 100IS: 4" x 2" MacroCore Sampler Well Borehole: 3 "	Page 1 of Location: Sampled: Well Insta	15 Ft. Wes Well RA-11 7/22/20 Iled: Non	008 1239 H e	irs.
Drilling Forema OBG Ge	n:	e e e	Eric N			Screen Riser	=	Sand Bento	Pack
Depth Below Grade	Depth Sample Below Depth Rec.			a zawienie	Sample / Unit Description		Stratum Change General Descript	Soil Samples	PID
0.5	1	0.0 - 3.0	2.7		ine to very coarse grained; gravel to U.U8"; light YR 6/2) to light gray (10YR 7/2); loose; dry ; roa		GP		
1.0				(10YR 7/ brick and	very tine grained; quartz gravel to 0.03; light gra (2) to very dark grayish brown (10YR 3/2); abur d coal fragments; scattered clayey sand; strong e to medium dense; Fill Material.	ndant	SP		
2.0									
2.5				SAND and GHAVEL - S	same as above; oil stained 2.0 to 3.5 Ft.		2.0 SP		30.3
3.0	2	3.0 - 7.0	2.8						
3.5						.,	3.5		
4.0				SAND AND GRAVEL -S	same as above; siity and oii stained basai U.5 F	t.	SP		40.4
4.5				BRICK			FILL		
	l		L		a a		1	1	1

BORING LOG SB-111-04

Location: 15' West of Monitoring

Page 2 of 2

File No: 38119.100.001

Well RA-111

Depth		Sam			Stratum Change	Soil	PID
Below Grade	No.	Depth (feet)	Rec. (teet)	Sample / Unit Description	General Descript	Samples	(ppm
				BRICK			
5.0							
				SILIY CLAY - dark gray (10YH 4/1); Iron oxide mottling; stiff to very stiff; slightly sandy in lower portion, very fine grained;	CL		
5.5				slight odor; fuel oil LNPL in numerous rootlet holes.			
6.0						\triangle	
6.5				SANDY SIL1 - very fine grained; dark gray (10YH 4/1); medium dense; slightly clayey; slight odor; isolated fuel oil; abundant rootlet holes; iron oxide mottling.	ML		37.9
					0		
7.0				Total Depth 7.0 Ft.			
7.5							
8.0							
8.5							
9.0							
9.5							
10.0							

votes:

Soil Sample SB-111-04SL01

Munsell Color Chart Description

Groundwater Level 07/22/2008

O'BRI	EN	& GER	E EN	NGINEERS, INC. Subsurface Investigation BORING LOG Record SB-114-01					
Client: Proj. Lo File No.	c.:	System BAE / N 38119.1	SR W.	Berkley Ave.	Rig: Geoprobe Model 5410 1001s: 4" x 2" Macrocore Sampler Well Borehole: 3 "	Sampled:	Page 1 of 2 Location: 5 Ft. West of Monitoring Well RA-114 Sampled: 7/22/2008 1045 Hrs Well Installed: None		
	Com n:	pany:	Fishbu Eric N	irne Drilling, Inc.		Screen Riser	=	\ Grout Sand Bento	Pack
Depth Below Grade		Sam Depth (feet)	ple		Sample / Unit Description		Stratum Change General Descript	Soil Samples	PID (ppm)
0	1	0.0 - 3.0	2.6		ine to very coarse grained; granite gravel to two (10YR 7/3); loose; dry; Road Bed.	0.03°; very	SP		
0.5									
1.0				-	rse grained; greenish gray (Gley 1 5/5GY); el and brick fragments; dry; coal fragments; F	ill Material.	SP		
1.5									
2.0									
2.5				SILTY SAND - fine grai brick, gr	ned; very dark grayish brown (2.5Y 3/2); scatanite, and quartz gravel.	tered coal,	SM		
3.0	2	3.0 - 7.0	2.4	CONCRETE			FILL		
3.5									
4.5				scattere	שני - זוחe grained; very dark bluish gray (Gley d sand layeres; abundant quartz, granite, and abundant brick fragments.		SP		
				1				1	

O'BRI	EN	& GER	E ENG	GINEERS, INC.	Subsurface Investigation Record		SB-114	SORING LOG SB-114-02		
Client:					Rig: Geoprobe Model 5410	Page 1 of Location:	5 Ft. South of Monitoring Well RA-114			
File No.		38119.1		Berkley Ave.	Well Borehole: 3 "	Sampled: Well Insta	7/22/20	008 1114 H	rs.	
	Com n:	pany:	Fishbi Eric N	urne Drilling, Inc.		Screen Riser	=	\ Grout Sand Bento	Pack	
Depth Below Grade		Sam	ple Rec.		Sample / Unit Description		Stratum Change General	Soil Samples	PID	
0	No.	(feet) 0.0 - 3.0	(feet) 2.7		attered quartz and granite gravel to 0.02°; very wn (10YR 7/3); loose; dry; roots.		Descript			
0.5										
1.0					rse grained; greenish gray (Giey 1 5/5GY); el and brick fragments; dry; coal fragments; Fill	Material.	SP			
1.5										
2.0					ned; very dark grayish brown (2.5Y 3/2); scatte anite, and quartz gravel.	red coal,	SM			
2.5				Brick						
3.0	2	3.0 - 7.0	2.8		e grained; greenish black (Gley צ איסרא); brick e fragments; dry.	and	SM			
3.5										
4.0					ine to very tine grained; prown (7.54H 4/3); abl I brick fragments; scattered quartz gravi; moist		SM			
4.5										
,		•		*						

BORING LOG SB-114-02

Location: 5' South of Monitoring

Well RA-114

Page 2 of 2

File No: 38119.100.001

Depth Below		Sam			Stratum	Soil	PID
Below Grade	No.	Depth (feet)	Rec. (teet)	Sample / Unit Description	General Descrip	Samples	(ppm)
				SILTY SILTY SAND	SM		
5.0							
	+					1\ /	
	\vdash	<u> </u>				\ x'	
						1/1	0.5
5.5				A STATE OF THE STA		4	
	-			CLAYEY SAND - very fine grained; very dark greenish gray (Gley 2 3/58G);	SC		
	\vdash	-		brick fragemnts; wet to saturated in the lower portion.			
	+	-	-				
6.0	T	†					
6.0							
	-						
	+		-	1			
7/2/12/2	+			1			
6.5	and the same of the same of						STATE STATE OF THE
	-						
	+-	-	-	-			
7.0	-		-	Total Depth 7.0 Ft.			
	1	†	 	Commence and Administration of the Commence and Commence			
		<u> </u>			1		
7.5		-	-	4			
	+-	-	-	1			
	1		—	1			1
8.0		- STEELING -					
	_			-			
	+-	+	-	1			
	+	 	1	1			
8.5]			1
0.0				4			
	+-	-	-	-			
	+-		1	1			
0.0	+			1			
9.0]			
	+	-	-	4			
	+-	+	+	1			
9.5		†	1	1			
	I]			
]			
	_			4			
10.0	-	 	+	4			
Notes:				Munsell Color Char	t Description		

Soil Sample SB-114-02-SL01

Groundwater Level 07/22/2008

APPENDIX B

Addendum Groundwater Sampling Forms

MONITORING WELL INSPECTION LOG

I.	Note: A separate inspe	ction sheet is required for each monitoring well.
	Monitoring Well Number:	RA-111
A.	Inspected by (full name):	Conrad Lawrence, Tina Bickerstaff, Steve Bulleigh
B.	Date/Time of Inspection:	7/22/2008 1531 Hrs.
C.	Inspection Observations (n	ote condition/observations for the following);
	1. Locking protective casing:	Flush Mount; lock on compression cap.
	2. Concrete well pad:	Yes, good shape, wood form coming apart.
	3. Lock:	Yes; rusty.
	4. Erosion:	None.
	5. Exterior well ID number:	None; Well ID on inside of protector casing.
	6. Inspection Comments:	Both bolts on protector lid on tight. No water inside of protector.
D.	Repair/Remediation Comr	nents/Recommendations: None
E.	Repair/Remediation Date:	

GROUND WATER SAMPLE LOG

Sampling Event:	FWBE - Follow-up Sampling July 2008				
Location:	BAE Systems / NSR				
Well No.:	RA-111				
Weather:	Calm, Sunny, Humid				
Ambient Temperature:	98 Degrees F, Heat Index 103 degrees F.				
Measurement Team:	Conrad Lawrence, Tina Bickerstaff, Steve Bulleigh				
Time Well Casing Unlocked:	1531 Hrs.				
tune (10) caloning control and					
Depth of Well from Top of Inner C	asing 14.9 FT				
Depth to Water from top of Inner (
Depth to Oil from Top of Inner Car	· · · · · · · · · · · · · · · · · · ·				
Thickness of Product (T)	na FT				
Length of Water Column	FT				
Measurement Technique	X Water level indicator				
	Oil/water interface probe				
	Other Explain:				
•					
Formulas for Determining Purg	e Volume				
Water level above sand pack:					
$3 \times [(\pi r_b^2 h_s - \pi r_c^2 h_s) \times 0.3 + (\pi r_c^2)]$	h _w)]				
	(1 Well Volume)				
Water level below sand pack:	0.102 Cu Ft GW / 1 Ft GW Col				
$3 \times [(\pi r_b^2 h_w - \pi r_c^2 h_w) \times 0.3 + (\pi r_c^2)]$	² h _w)] 0.76 Gal GW / 1 Ft GW Col				
where:	w. -				
$r_b = radius of boring$	a = 0.30 ft				
	·				
r _c = radius of casing	·				
$h_s = height of sand$	= <u>13</u> ft				
$h_w = height of water$	<u>= 10.3</u>				
Amount of water to be purged:	23.5 gallons				
Amount of water to be purged.					
Immiscible Layer present:	YesXNo				
Detection Method:	X Visual O/W interface Other				
Collection Method:	X Beaker Other (Bailer)				
Observation:	Color Odor Other				
					
Purge Team: Conrad Lawren	nce, Tina Bickerstaff, Steve Bulleigh				
Purge Procedure/Equipment:	Bailer X Pump				
Purge Time: 1547 to 1551					
Purge Volume: 12 gallons	Did well go dry? X YesNo				
<u> </u>					
Purge Water Appearance (initial/	final):				
Color Dark Gray / Medium Gray	· · · · · · · · · · · · · · · · · · ·				
Odor Moderate / Moderate	Particulat∈ Abundant Fine Sand / Moderate Fine Sand				
_ 20. <u></u>					
Comments: Observed isola	ated petroleum sheen on development water when taking field parameters.				

GROUND WATER SAMPLE LOG (continued)

Sampling event:	FWBE - Follow-up San	npling July	y <u>2008</u>	
Well no.:	RA-111	_Date:	7/22/2008 Sample time	1553 Hrs.
Sampling team:	Conrad Lawrence, Tina	a Bickersta	ff, Steve Bulleigh	
Sampling procedures/equipment:		_Bailer	X	Pump
pH meter calibrated with buffers	4.00	<u>o</u>		
pH meter calibrated by:	Conrad Lawrence			
Conductivity meter calibrated with	standard solution of	<u>1.413 M</u>	Potassium Chloride	mSiemens/cm
Conductivity meter calibrated by:	Conrad Lawrence			
pH (Standard Units) Temperature (C) Conductivity (mS/cm) Turbidity (NTUs) TDS (ppt) Sample collection time/container* (1) VOC (G/HCI) (3) TOC (A/H ₂ SO ₄ (5) O&G/TPH (A/H (7) N (P/None) (9) SO (P/None) (11) DMET (P/None) (13) Chloride (None) (15) X SVOC / PAHs) (CI) (r)	3rd Volume	Final 6.78 24.6 1.05 Ins. Mal. 0.53 (2) (4) (6) (8) (10) (12) X (14) (16)	TOX (A/HNO ₃) COD (A/H ₂ SO ₄) PHEN (A/H ₂ SO ₄) PHOS (A/H ₂ SO ₄) TMET (P/HNO ₃) pH, Cond (Field) Small Tst (P/None) Phenolics (A/H2SO4
Locked well at: 1400 Hrs.				
Comments: A LaMotte Turk	oidity Meter (Model 2020) was also	used. The Turbidity Mete	er was calibrated to 1.0 a
10.0-NTUs-at-Well-RA-11	4			

^{*} G=Glass, A=Amber glass bottle, P=Plastic (polyethylene)

MONITORING WELL INSPECTION LOG

I.		Note: A separate inspe	ction sheet is required for each monitoring well.
		Monitoring Well Number:	RA-114
A.		Inspected by (full name):	Conrad Lawrence, Tina Bickerstaff, Steve Bulleigh
B.		Date/Time of Inspection:	7/22/2008 1452 Hrs.
C.		Inspection Observations (n	ote condition/observations for the following);
	1.	Locking protective casing:	Flush Mount; lock on compression cap.
	2.	Concrete well pad:	Yes, good shape, wood form coming apart.
	3.	Lock:	Yes, rusty.
	4.	Erosion:	None.
	5.	Exterior well ID number:	None; Well ID on inside of protector casing.
	6.	Inspection Comments:	Both bolts on protector lid on tight. No water inside of protector.
D.		Repair/Remediation Comm	nents/Recommendations: None
E.		Repair/Remediation Date:	

GROUND WATER SAMPLE LOG

Sampling Event:	FWBE - Follow-up Sampling July 2008	
Location:	BAE Systems / NSR	
Well No.:	RA-114	
Weather:	Calm, Sunny, Humid	
Ambient Temperature:	98 Degrees F, Heat Index 103 degrees F.	
Measurement Team:	Conrad Lawrence, Tina Bickerstaff, Steve Bulleigh	
Time Well Casing Unlocked:	1452 Hrs.	
Depth of Well from Top of Inner Concepts to Water from top of Inner Concepts to Oil from Top of Inner Cast Thickness of Product (T) Length of Water Column	Casing 6.05 FT	
Measurement Technique	X Water level indicator Oil/water interface probe Other Explain:	
Formulas for Determining Purge Water level above sand pack: $3 \times [(\pi r_b^2 h_s - \pi r_c^2 h_s) \times 0.3 + (\pi r_c^2 h_s)]$	n _w)]	
Materia, and below and made	(1 Well Volume) 0.102 Cu Ft GW / 1 Ft GW Col	
Water level below sand pack:		
$3 \times [(\pi r_b^2 h_w - \pi r_c^2 h_w) \times 0.3 + (\pi r_c^2)]$	h _w)] 0.76 Gal GW / 1 Ft GW Col	
where:		
$r_b = radius of boring$		
$r_c = radius of casing$	g = 0.088 ft	
$h_s = height of sand$	= 13 ft	
$h_w = height of water$	= 8.9	
Amount of water to be purged:	20.3 gallons	
Immiscible Layer present:	Yes X No	Other
Detection Method:	X Visual O/W interface	Other
Collection Method:	X Beaker Other (Bailer)	Other
Observation:	OdorOdor	_Other
Purge Team: Conrad Lawren	ce, Tina Bickerstaff, Steve Bulleigh	
Purge Procedure/Equipment:	Bailer X Pump	
Purge Time: 1455 to 1503		
Purge Volume: 9 gallons	Did well go dry? X Yes	_No
Purge Water Appearance (initial/f	·	
Color Dark Gray / Medium Gray		
Odor Slight / Slight	Particulate Some Sand / Some Sand	
Comments: Very low recha	rge.	

GROUND WATER SAMPLE LOG (continued)

Sampling event:	FWBE - Follow-up Sa	ampling Jul	ly 2008		
Well no.:	RA-114	Date:	7/22/2008 Sa	ample time	1505 Hrs.
Sampling team:	Conrad Lawrence, T	ina Bickersta	aff, Steve Bullei	gh	
Sampling procedures/equipment:		Bailer		Х	_Pump
pH meter calibrated with buffers	4.	00		7.00	<u> </u>
pH meter calibrated by:	Conrad Lawrence				
Conductivity meter calibrated with	standard solution of	<u>1.413 M</u>	Potassium Chl	orid <u>e</u>	mSiemens/cm
Conductivity meter calibrated by:	Conrad Lawrence				
pH (Standard Units) Temperature (C) Conductivity (mS/cm) Turbidity (NTUs) TDS (ppt) Sample collection time/container*/ (1) VOC (G/HCi) (3) TOC (A/H ₂ SO ₄) (5) O&G/TPH (A/Hci) (7) N (P/None) (9) SO (P/None) (11) DMET (P/None) (13) Chloride (None) (15) X SVOC / PAHs (12)	CI)	3rd e Volume	(2)	<u>X</u>	TOX (A/HNO ₃) COD (A/H ₂ SO ₄) PHEN (A/H ₂ SO ₄) PHOS (A/H ₂ SO ₄) TMET (P/HNO ₃) pH, Cond (Field) Small Tst (P/None) Phenolics (A/H2SO4
Locked well at: 1519 Hrs.		:			
	idity Meter (Model 202	0) was also	used. The Turl	bidity Meter	was calibrated to 1.0 a
10.0 NTUs.			-		

^{*} G=Glass, A=Amber glass bottle, P=Plastic (polyethylene)

MONITORING WELL INSPECTION LOG

I.	Note: A separate inspe	ction sheet is required for each monitoring well.
	Monitoring Well Number:	SWMU-102
Α.	Inspected by (full name):	Conrad Lawrence, Tina Bickerstaff, Steve Bulleigh
В.	Date/Time of Inspection:	7/22/2008 1612 Hrs.
c.	Inspection Observations (n	ote condition/observations for the following);
	1. Locking protective casing:	Flush Mount; lock on compression cap.
	2. Concrete well pad:	No - completed on asphalt
	3. Lock:	Yes
	4. Erosion:	None
	5. Exterior well ID number:	None; Well ID on inside of protector casing.
	6. Inspection Comments:	Broke both bolts on flush-mount protector lid. No water inside of protector.
D.	Repair/Remediation Comr	nents/Recommendations: Replace broken bolts. Will require drilling out old bolt end
	-	
E.	Repair/Remediation Date:	

GROUND WATER SAMPLE LOG

Sampling Event: Location: Well No.: Weather: Ambient Temperature: Measurement Team: Time Well Casing Unlocked: Depth of Well from Top of Inner Capeth to Water from top of Inner Capeth to Oil from Top of Inner Casethickness of Product (T) Length of Water Column	asing 3.33 FT
Measurement Technique	X Water level indicator Oil/water interface probe Other Explain:
Formulas for Determining Purge Water level above sand pack: $3 \times [(\pi r_b^2 h_s - \pi r_c^2 h_s) \times 0.3 + (\pi r_c^2 h_s)]$	
Water level below sand pack: $3 \times [(\pi r_b^2 h_w - \pi r_c^2 h_w) \times 0.3 + (\pi r_c^2 h_w)]$ where: $r_b = radius of boring$	= 0.30 ft
$r_c = radius of casing$ $h_s = height of sand$ $h_w = height of water$	= 0.088 ft = 13 ft = 11.4
Amount of water to be purged:	26.0 gallons
Immiscible Layer present: Detection Method: Collection Method: Observation:	Yes X No O/W interface Other X Beaker Other (Bailer) Color Odor Other
Purge Team: Conrad Lawrence	ce, Tina Bickerstaff, Steve Bulleigh
Purge Procedure/Equipment: Purge Time: 1615 to 1625 H Purge Volume: 27 gallons	Bailer X Pump Ts. Did well go dry? Yes X No
Purge Water Appearance (initial/fin Color Black / Very Dark Gray Odor Slight / Slight	Clarity Opaque / Very Turbid Particulate Abundant Fine to Medium Sand / Some Sand
Comments: Well completed	in Blast Sand. Pumped continuously at maximum pump rate at about 2.0 gpm.

GROUND WATER SAMPLE LOG (continued)

Sampling event:	FWB	FWBE - Follow-up Sampling July 2008					
Well no.:	SWN	SWMU-102		Date:	7/22/2008	Sample time	1626 Hrs.
Sampling team:	Conr	ad Lawr	ence, Tina	Bickerstaff	, Steve Bul	leigh	
Sampling procedures/equip	ment:	1000 m		Bailer	5 -	Х	Pump
pH meter calibrated with bu	ffers	_	4.00	_	8.	7.00	<u> </u>
pH meter calibrated by:	Conr	ad Lawr	ence (Met	ter calibrate	ed at Well R	RA-114) (Hanr	na 991301)
Conductivity meter calibrate	ed with standa	ard solut	ion of	1.413 M P	otassium C	hloride	mSiemens/cm
Conductivity meter calibrate	ed by: Conr	ad Lawr	ence (Me	ter calibrate	ed at Well R	RA-114) (Han	na 991301)
(7) N (P/Nor (9) SO (P/N (11) DMET (I (13) Chloride	vo 7 3 1 1 0 tainer*/preser (HCI) H ₂ SO ₄) H (A/HCI) ne) one) P/None)		2nd Volume 7.50 31.5 1.31 76.4 0.65	3rd Volume 7.49 31.3 1.33 34.5 0.66	Final 7.48 31.2 1.34 55.9 0.67 (2) (4) (6) (8) (10) (12) (14) (16)		TOX (A/HNO ₃) COD (A/H ₂ SO ₄) PHEN (A/H ₂ SO ₄) PHOS (A/H ₂ SO ₄) TMET (P/HNO ₃) pH, Cond (Field) Small Tst (P/None) Phenolics (A/H2SO ₄)
Locked well at: 1638 H	rs.				4440		
Comments: A LaMor	te Turbidity M	Meter (Mo	odel 2020)	was also u	sed. The T	urbidity Meter	was calibrated to 1.0 a
10.0 NTUs at Well	RA-114.						

^{*} G=Glass, A=Amber glass bottle, P=Plastic (polyethylene)

APPENDIX C

Addendum Laboratory Analytical Report

Thursday, August 14, 2008

Ms. Tina Bickerstaff
O'Brien & Gere Engineers, Inc
8401 Corporate Dr.
Suite 400
Landover, MD 20785

TEL: 301-731-5622

Project: BAE NORTHFOLK SHIP REPAIR

RE: Analytical Results

Order No.: 0807109

Dear Ms. Tina Bickerstaff:

Life Science Laboratories, Inc. received 5 sample(s) on 7/24/2008 for the analyses presented in the following report.

Very truly yours, Life Science Laboratories, Inc.

Anthony Crescenzi Project Manager

CC:

Mr. Conrad Lawrence; O'Brien & Gere Engineers, Inc

LSL

fe Science Laboratories, Inc. Brittonfield Lab

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057 (315) 437-0200 Chain of Calody

Client: 6 Brien 9 Geve Eng	Inge	سی بند -			ه				Ar	alysis	:/Meth	od	
Project: RAE/NSR + EWBE	Folle	seve p	38/	19.10	o o o o o	7	7		- /		/ /	/	
Project: BAE/NSR - FWBE Sampled by: Contllewren	ec, 1	1-19 B	jek	-5/2	.FR	/.	N. T. S.					_/}	į
Client Contact: 112 Bickerstaff P	hone #	443/	ZZ3	- 97	<u><8</u>	W.	0/					/	
Sample Des				,		43						/	
Sample Location	Date Collected	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers	/~ 00		<u> </u>		<u> </u>	<u> </u>		Comments
SWM4-102-0708	7/24/00	1626	GW	0	Z	2		_		<u> </u>	ļ	<u> </u>	
JWMU-102-M5-0708	1	1626		Con	2_	고				 			
SWMU-102-45D-0708		1626		G	2	2				ļ	ļ		
SWM4-152-0708	<u> </u>	1630	GW	G-	2	Z-				ļ. <u></u>		 	
RA-111-0708	<u> </u>	1	GW	1	~	2	_ 		ļ	 	<u> </u>	 	
PA-114-0708		1505			2_	<u>Z</u>				 	┼	 	
GWEB-01-0708	22/05	1700	ω	G-	2	2			 	 	 	-	
	ļ	<u> </u>		 				<u> </u>	 	 	 	 	
	<u> </u>	ļ <u>.</u>		ļ	<u> </u>	-			 		╄	-	
	<u> </u>		ļ	 		 			 		-	 	
	ļ. <u></u>		ļ <u>.</u>			<u> </u>			├	<u> </u>	-	 	
	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>	<u></u> _		1				
Relinquished by: Manual	D:	ale:7/20	28 m	:1846	Receive	ed by:					· [Date:	Time:
Relinquished by:	D	ate:	Time	e:	Receive				_		l	Date:	Time:
Relinquished by:	D	ate:	Tim	e:	Receiv	ed by Lai	b: イベ	سلر	C		, ,	Date: 7/5	14/08 Time: 12:00
Shipment Method:			0		Airbiii N	Vumber:			·				

Turnaround Time Required:	
RoutineX	
Rush (Specify)	

Comments:

Sample RA-111-0708 > Development GW

had isolated small blocks of fuctor's

cc. results to Co-that Lawrence of

Original - Laboratory Copy - Client Grant Matthews OBRIEN & GERE 4435 Waterfront Drive

GLEN ALLEN, VA 230603331

CLS2514982474

SHIP TO: 3154370200

BILL SENDER Tony Crescenzl/Sample receiving Life Science Labs Inc-Brittonfield 5000 Brittonfield Parkway

Suite 200

East Syracuse, NY 13057

Activgt: 50 LB System#: 8192691/INET8061 Account#: S

Dims: 24 X 24 X 36 IN

Delivery Address Bar Code

Invoice # PO# Dept#

7993 5629 6648

A1 THU - 24JUL

STANDARD OVERNIGHT

13057 NY-US

SYR

After printing this label:

1. Use the 'Print' hutton on this name to print your label to your laser or inkiet printer.

Sample Receipt Checklist

Client Name: OBG-LANDOVER			Date and Ti	me Received:	7/24	1/2008 12:00:00 PM
Work Order Number 0807109			Received by	: kac		
Checklist completed by: 16 Initials	7/2 ^y	1/08	_ Reviewed	by:	<u>1-</u>	7-24-08 Date
Matrix:	Carrier name:	<u>FedEx</u>				
Shipping container/cooler in good condition?		Yes 🗹	No 🗀	Not Present		
Custody seals intact on shipping container/cooler?	i	Yes 🗌	No 🗌	Not Present	₩	
Custody seals intact on sample bottles?		Yes 🗌	No 🗀	Not Present	Z:	
Chain of custody present?		Yes 🗹	No 🗀			
Chain of custody signed when relinquished and re-	ceived?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗆			
Samples in proper container/bottle?		Yes 🗹	No 🗆			
Sample containers intact?		Yes 🔽	No 🗔	,		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔			
All samples received within holding time?		Yes 🔀	No 🗀			
Container/Temp Blank temperature in compliance	?	Yes 🗹	No 🗆			
Water - VOA vials have zero headspace?		Yes 🗆	No 🗀	No VOA vials s	ubmitted	∑
Motor all accordance concerns		Von [**]	No T	Not Applicable	ه √ا	•

Comments:

Corrective Action::

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

O'Brien & Gere Engineers, Inc CLIENT:

BAE Northfolk Ship Repair Project:

W Order: 0807109

GROUNDWATER Matrix:

Inst. ID: MS05 26

ColumnID: DB-5MS Revision: 07/31/08 9:17

Sample Size: 940 mL

%Moisture:

TestCode: 8270W SIMP

Lab ID:

0807109-001A Client Sample ID: SWMU-102-0708

Collection Date: Date Received:

07/22/08 16:26 07/24/08 12:00

PrepDate: BatchNo:

FileID:

07/28/08 10:23 7858/R14356

1-SAMP-N9671.D

Col Type:

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	SW8270	C .	(SW3520C)			
2-Methylnaphthalene	4.09	0.213	0.0149	μg/L	1	07/30/08 21:21
Acenaphthene	6.82	0.213	0.0149	µg/L	1	07/30/08 21:21
Acenaphthylene	0.121 J	0.213	0.0117	μg/L	1	07/30/08 21:21
Anthracene	1.84	0.213	0,0170	μg/L	1	07/30/08 21:21
Benzolajanihracene	1.48	0.213	0.0160	μg/L	1	07/30/08 21:21
	1.16	0.213	0.0138	μg/L	1	07/30/08 21:21
Benzo[a]pyrene	2.08	0.213	0.0160	μg/L	1	07/30/08 21:21
Benzo[b]fluoranthene	0.511	0.213	0.0100	μg/L	1	07/30/08 21:21
Benzolg,h,ilperylene	0.812	0.213	0.0191	µg/L	1	07/30/08 21:21
Benzo[k]fluoranthene	1.37	0.213	0.0223	μg/L	1	07/30/08 21:21
Chrysene	0.149 J	0.213	0.0128	μg/L	1	07/30/08 21:21
Dibenz[a,h]anthracene	6.67	0.213	0.0181	μg/L	1	07/30/08 21:21
Fluoranthene	6.07	0.213	0.0170	μg/L	1	07/30/08 21:21
Fluorene	0.448	0.213	0.0138	μg/L	1	07/30/08 21:21
Indeno[1,2,3-cd]pyrene	3,11	0.213	0.0104	μg/L	1	07/30/08 21:21
Naphthalene	5.11 6.66	0.213	0.0138	μg/L	1	07/30/08 21:21
Phenanthrene			0.0170	μg/L	1	07/30/08 21:21
Pyrene	4.53	0.213	0.0170	%REC	1	07/30/08 21:21
Surr: Terphenyi-d14	72.8	51-135	U	BILLO	•	

i

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim/Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
 - S Spike Recovery outside accepted recovery limits

Print Date: 08/01/08 7:55

376549

Project Supervisor: Anthony Crescenzi

Analytical Results

I SI 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

CLIENT: O'Brien & Gere Engineers, Inc

Project: BAE Northfolk Ship Repair W Order:

0807109

GROUNDWATER Matrix:

MS05 26 Inst. ID: ColumnID: DB-5MS

Revision: 07/31/08 9:17 Sample Size: 930 mL

%Moisture:

TestCode: 8270W SIMP

0807109-002A

Client Sample ID: SWMU-152-0708 07/22/08 16:30

Collection Date: Date Received: PrepDate:

Lab ID:

BatchNo:

FileID:

07/24/08 12:00 07/28/08 10:23

7858/R14356 1-SAMP-N9674.D

Col Type:

Analyte	Result Qua	al PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO!	S-SIM		SW8270	C	(SW3520C)	
2-Methylnaphthalene	4.20	0.215	0.0151	μg/L	1	07/30/08 22:51
Acenaphthene	6.96	0.215	0.0151	μg/L	1	07/30/08 22:51
Acenaphthylene	0.133 J	0,215	0.0118	μg/L	1	07/30/08 22:51
Anthracene	2.11	0.215	0.0172	µg/L	1	07/30/08 22:51
Benzo[a]anthracene	2.43	0.215	0.0161	μg/L	1	07/30/08 22:51
Benzo[a]pyrene	1.70	0.215	0.0140	μg/L	1	07/30/08 22:51 `
Benzo[b]fluoranthene	2.82	0.215	0.0161	μg/L	1	07/30/08 22:51
Benzo[g,h,i]perylene	0.777	0.215	0.0101	μg/L	1	07/30/08 22:51
Benzo[k]fluoranthene	1.44	0.215	0.0194	μg/L	1	07/30/08 22:51
Chrysene	2.19	D.215	0.0226	μg/L	1	07/30/08 22:51
Dibenz[a,h]anthracene	0.225	0.215	0.0129	μg/L	1	07/30/08 22:51
Fluoranthene	8.03	0.215	0.0183	μg/L	1	07/30/08 22:51
Fluorene	6.37	0.215	0.0172	μg/L	1	07/30/08 22:51
Indeno[1,2,3-cd]pyrene	0.708	0.215	0.0140	μg/L	1	07/30/08 22:51
Naphthalene	3.22	0.215	0.0105	μg/L	1	07/30/08 22:51
Phenanthrene	7.34	0.215	0.0140	μg/L	1	07/30/08 22:51
Pyrene	5.83	0.215	0.0172	μg/L	1	07/30/08 22:51
Surr: Terphenyl-d14	77.5	51-135	0	. %REC	1	07/30/08 22:51

Qualifie	rs:
----------	-----

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
 - S Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Analytical Results

StateCertNo: 00244

Project:

O'Brien & Gere Engineers, Inc

BAE Northfolk Ship Repair

W Order:

0807109 .

Matrix:

GROUNDWATER

Inst. ID:

MS05 26

ColumnID: DB-5MS

07/31/08 9:17

Sample Size: 950 mL %Moisture:

TestCode: 8270W SIMP Lab ID:

0807109-003A

Client Sample ID: RA-111-0708

Collection Date: Date Received:

07/22/08 15:53 07/24/08 12:00

PrepDate: BatchNo:

FileID:

07/28/08 10:23

7858/R14356

1-SAMP-N9669.D

Revision: Col Type:

Analyte	Result Qua	ıl PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	SW8270	C	(SW3520C)			
2-Methylnaphthalene	ND	0.211	0.0147	μg/L	1	07/30/08 20:22
Acenaphthene	1.26	0.211	0.0147	μg/L	1	07/30/08 20:22
Acenaphthylene	ND	0.211	0.0116	μg/L	1	07/30/08 20:22
Anthracene	0.155 J	0.211	0.0168	µg/L	1	07/30/08 20:22
Benzo[a]anthracene	0.0252 J	0.211	0.0158	μg/L	1	07/30/08 20:22
Benzo[a]pyrene	ND	0.211	0.0137	μg/L	1	07/30/08 20:22
Benzo[b]fluoranthene	ND	0.211	0.0158	μg/L	1	07/30/08 20:22
Benzo[g,h,i]perylene	0.0441 J	0.211	0,00989	µg/L	1	07/30/08 20:22
Benzo[k]fluoranthene	ND	0.211	0.0189	μg/L	1	07/30/08 20:22
Chrysene	0.0367 J	0.211	0.0221	μg/L	1	07/30/08 20:22
Dibenz[a,h]anthracene	ND	0.211	0.0126	μg/L	1	07/30/08 20:22
Fluoranthene	0.108 J	0.211	0.0179	µg/L	1	07/30/08 20:22
Fluorene	0.412	0.211	0.0168	μg/L	1	07/30/08 20:22
	ND	0.211	0.0137	μg/Ł	1	07/30/08 20:22
Indeno[1,2,3-cd]pyrene	ND	0.211	0.0103	µg/L	1	07/30/08 20:22
Naphthalene .	0.0417 J	0.211	0.0137	µg/L	1	07/30/08 20:22
Phenanthrene	0.374	0.211	0.0168	µg/L	1	07/30/08 20:22
Pyrene			0.0100	%REC	1	07/30/08 20:22
Surr: Terphenyl-d14	58.3	51-135	v	731 VEC	•	22702 20

^			ers
u	ца	ш	CIS

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

S Spike Recovery outside accepted recovery limits

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

CLIENT:

O'Brien & Gere Engineers, Inc BAE Northfolk Ship Repair

Client Sample ID: RA-114-0708 **Collection Date:**

0807109-004A

W Order:

0807109

07/22/08 15:05

Matrix:

Project:

GROUNDWATER

Date Received:

07/24/08 12:00

Inst. ID:

MS05 26

07/31/08 9:17

Sample Size: 1000 mL

PrepDate: BatchNo:

07/28/08 10:23 7858/R14356

ColumnID: DB-5MS Revision:

%Moisture: TestCode:

8270W SIMP

FileID:

Lab ID:

1-SAMP-N9663.D

Col Type:

Analyte	Result Qua	il PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS	 S - SIM		SW8270	C	(SW3520C)
2-Methylnaphthalene	ND	0.200	0.0140	μg/L	1	07/30/08 17:22
Acenaphthene	ND	0.200	0.0140	μg/L	1	07/30/08 17:22
Acenaphthylene	ND	0.200	0.0110	μg/L	1	07/30/08 17:22
Anthracene	0,0248 J	0.200	0.0160	μg/L	1	07/30/08 17:22
Benzo[a]anthracene	0.0170 J	0.200	0.0150	μg/L	1	07/30/08 17:22
Benzo[a]pyrene	ND	0.200	0.0130	μg/L	1	07/30/08 17:22
Benzo[b]fluoranthene	0.0494 J	0.200	0.0150	μg/L	1	07/30/08 17:22
Benzo[g,h,i]perylene	0.194 J	0.200	0.00940	μg/L	1	07/30/08 17:22
Benzo[k]fluoranthene	0.0201 J	0,200	0.0180	µg/L	1	07/30/08 17:22
Chrysene	0.0354 J	0.200	0.0210	μg/L	1	07/30/08 17:22
Dibenz[a,h]anthracene	ND	0.200	0.0120	μg/L	1	07/30/08 17:22
Fluoranthene	0.230	0.200	0,0170	μg/L	1	07/30/08 17:22
Fluorene	0.0266 J	0.200	0.0160	μg/L	1	07/30/08 17:22
Indeno[1,2,3-cd]pyrene	0.0417 J	0,200	0.0130	μ g /L	1	07/30/08 17:22
Naphthalene	0.0116 J	0.200	0.00980	μg/L	1	07/30/08 17:22
Phenanthrene	0.0350 J	0.200	0.0130	μg/L	1	07/30/08 17:22
Pyrene	0.325	0.200	0.0160	μg/L	1	07/30/08 17:22
Surr: Terphenyl-d14	59.2	51-135	0	%REC	1	07/30/08 17:22

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

O'Brien & Gere Engineers, Inc Project:

BAE Northfolk Ship Repair

W Order: 0807109 WATER Matrix:

Inst. ID: MS05 26 ColumnID: DB-5MS

07/31/08 9:17 Revision:

Sample Size: 1000 mL

%Moisture:

TestCode: 8270W SIMP

Lab ID:

0807109-005A

Client Sample ID: GWEB-01-0708

Collection Date: Date Received:

07/22/08 17:00 07/24/08 12:00

PrepDate: BatchNo:

FileID:

07/28/08 10:23 7858/R14356

1-SAMP-N9664.D

Col Type:

Analyte	Result Qua	al PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS	 S - SIM	-	SW8270	C	(SW3520C)
2-Methylnaphthalene	ND	0.200	0.0140	μg/L	1	07/30/08 17:52
Acenaphthene	ND	0.200	0.0140	μg/L	1	07/30/08 17:52
Acenaphthylene	ND	0.200	0.0110	μg/L	1	07/30/08 17:52
Anthracene	ND	0.200	0.0160	μg/L	1	07/30/08 17:52
Benzo[a]anthracene	ND	0.200	0.0150	μg/L.	1	07/30/08 17:52
Benzo[a]pyrene	ND	0.200	0.0130	µg/L	1	07/30/08 17:52
Benzo[b]fluoranthene	ND	0.200	0.0150	μg/L	1	07/30/08 17:52
Benzo[g,h,i]perylene	ND	0.200	0.00940	μg/L	1	07/30/Q8 17:52
Benzo[k]fluoranthene	ND	0.200	0.0180	µg/L	1	07/30/08 17:52
Chrysene	ND	0.200	0.0210	μg/L	1	07/30/08 17:52
Dibenz[a,h]anthracene	ND	0.200	0.0120	µg/L	1	07/30/08 17:52
Fluoranthene	NĐ	0.200	0,0170	μg/L	1	07/30/08 17:52
Fluorene	ND	0.200	0.0160	μg/L	1	07/30/08 17:52
Indeno[1,2,3-cd]pyrene	ND	0.200	0.0130	μg/L	1	07/30/08 17:52
Naphthalene	ND	0.200	0.00980	μg/L	1	07/30/08 17:52
Phenanthrene	ND	0.200	0.0130	μg/L	1	07/30/08 17:52
Pyrene	ND	0,200	0.0160	μg/L	1	07/30/08 17:52
Surr: Terphenyl-d14	75.3	51-135	0	%REC	1	07/30/08 17:52

Ou	. 1:47	
Qui	# 6TT1	CI :

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
 - Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SW8270C

Work Order:

0807109

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & Gere	Èngineers, Inc					Proje	ect:	BAE Nor	pair									
Sample ID: 0807109-001AMS Client ID: SWMU-102-0708 Instrument: MS05_26	SampType: MS Batch ID: 7858 ColumnID: DB-5MS	TestCode: 8270W_SIMP Units: µg/L Method: SW8270C (SW3520C) ZB-5, 0.5 df			· ·										RunNo: SeqNo:	143 376	556 5550	
 Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	%	RPD	RPDLimit	Qual						
2-Methylnaphthalene	10,4	0.215	10.8	4.09	59	46	120											
Acenaphthene	16.7	0.215	10.8	6.82	92	47	120											
Acenaphthylene	9.92	0.215	10.8	0.121	91	50	120											
Anthracene	12.3	0.215	10.8	1.84	97	54	120											
Benzo[a]anthracene	11.2	0.215	10.8	1.48	90	56	100											
Benzo[a]pyrene	12.8	0.215	10.8	1.16	108	53	120		•									
Benzo[b]fluoranthene	15.3	0.215	10.8	2.08	123	45	124											
Benzo[g,h,i]perylene	6.95	0.215	10.8	0.511	60	38	123											
Benzo[k]fluoranthene	14.4	0.215	10.8	0.812	126	45	124					S						
Chrysene	10.8	0.215	10.8	1.37	88	55	120											
Dibenz[a,h]anthracene	3.04	0.215	10.8	0.149	27	42	127					S						
Fluoranthene	17.2	0.215	10.8	6.67	98	54	120											
Fluorene	16.9	0.215	10.8	6.07	101	50	120											
Indeno[1,2,3-cd]pyrene	6.89	0.215	10.8	0.448	60	43	125											
	10,1	0.215	10.8	3.11	65	39	120											
Naphthalene Phenanthrene	17.4	0.215	10.8	6.66	100	51	120											
	15.6	0.215	10.8	4.53	103	49	128											
Pyrene Surr: Terphenyl-d14	7.76	0.213	10.8	0	72	51	135											

Qualifiers:

Analyte detected in the associated Method Blank

Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

E Value exceeds the instrument calibration range

R RPD exceeds accepted precision limit

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPURT

Method:

SW8270C

Work Order:

0807109

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & Gere		Project:		BAE Northfolk Ship Repair							
Sample ID: 0807109-001AMSD Client ID: SWMU-102-0708 Instrument: MS05_26	SampType: MSD Batch ID: 7858 ColumnID: DB-5MS	TestCod Method:	e: 8270W_SIMF SW8270C ZB-5, 0.5 df	Units: µg/L (SW3520C)		Prep Date: Analysis Dat	7/28/20 e: 7/30/20			356 3551	
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	10.4	0.215	10.8	4.09	58	46	120	10.4	0.1	20	
Acenaphthene	16,6	0.215	10.8	6.82	91	47	120	16.7	0.4	20	
Acenaphthylene	9.68	0.215	10.8	0.121	89	50	120	9.92	2.5	20	
Anthracene	12.8	0.215	10.8	1.84	102	54	120	12.3	4.1	20	
Benzo[a]anthracene	12.3	0.215	10.8	1.48	100	56	100	11.2	9.5	20	
Benzo[a]pyrene	13.0	0.215	10.8	1.16	110	53	120	12.8	1.6	20	_
Benzo[b]fluoranthene	16.3	0.215	10.8	2.08	132	45	124	15.3	6.6	20	S
Benzo[g,h,i]perylene	7.40	0.215	10.8	0.511	64	38	123	6.95	6.3	20	_
Benzo[k]iluoranthene	14.3	0.215	10.8	0.812	126	45	124	14.4	0.6	20	S
▼ -	11.5	0.215	10.8	1.37	95	55	120	10.8	6.6	20	_
Chrysene	3,15	0.215	10,8	0.149	28	42	127	3.04	3.7	20	S
Dibenz[a,h]anthracene	18.7	0.215	10.8	6.67	112	54	120	17.2	8.2	20	
Fluoranthene	16.9	0.215	10.8	6.07	101	50	120	16.9	0	20	
Fluorene	7.25	0.215	10.8	0.448	63	43	, 125	6.89	5.0	20	
Indeno[1,2,3-cd]pyrene	10.2	0.215	10,8	3.11	66	39	120	10.1	1.1	20	
Naphthalene	18.3	0.215	10.8	6.66	108	51	120	17.4	5,0	20	
Phenanthrene	16.6	0.215	10.8	4.53	113	49	128	15.6	6.5	20	
Pyrene Surr: Terphenyl-d14	8.15	0.213	10.8	0	76	51	135	0		0	

Qualifiers:

Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RI.

E Value exceeds the instrument calibration range

R RPD exceeds accepted precision limit

J Analyte detected below the PQL

S Spike Recovery outside accepted recovery limits

O'Brien & Gere Engineers, Inc

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT:

(315) 437-0200

ANALYTICAL QC SUMMARY REFURT

Method:

SW8270C

Work Order:

0807109

Project:

BAE Northfolk Ship Repair

Sample ID: LCS-7858 Client ID: ZZZZZ Instrument: MS05_26	SampType: LCS Batch ID: 7858 CotumnID: DB-5MS	TestCod Method:	e: 8270W_SIM SW8270C ZB-5, 0.5 df	P Units: µg/L (SW3520C)		Prep Date: Analysis Dat		7/28/2008 7/30/2008		RunNo: 14356 SeqNo: 376539		
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC			RPD Ref Val		4RPD	RPDLimit	Qual
2-Methylnaphthalene	3.70	0.200	10	0	37	46	120					3
Acenaphthene	6.52	0.200	10	0	65	47	120					
Acenaphthylene	6.69	0.200	10	0	67	50	120					
Anthracene	9.96	0.200	10	0	100	54	120 100					
Benzo[a]anthracene	9.59	0.200	10	0	96	56	120					
Benzo[a]pyrene	11.2	0.200	10	0	112	53	124					
Benzo[b]fluoranthene	11.4	0.200	10	0	114	45	123					
Benzo[g,h,i]perylens	11.0	0.200	10	0	110	38	123					
Benzo[k]fluoranthene	12.3	0.200	10	0	123	45	120					
Chrysene	9.28	0.200	10	0	93	55	127					s
Dibenz(a,h)anthracene	3.99	0.200	10	0 .	40	42	120					_
Fluoranthene	10.6	0.200	10	0	106	54	•					
Fluorene	8.97	0.200	10	0	90	50	120					
Indeno[1,2,3-cd]pyrene	9.57	0.200	10	0	95	43	125					
Naphthalene	4.91	0,200	10	0	49	39	120					
Phenanthrene	9.76	0.200	10	0	98	51	120					
Pyrene	10.6	0.200	10	0	106	49	128					
Surr: Terphenyl-d14	8.15	0	10	0	81	51	135					

Qualifiers:

Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

E Value exceeds the instrument calibration range

R RPD exceeds accepted precision limit

J Analyte detected below the PQL

S Spike Recovery outside accepted recovery limits

01-Aug-08

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SW8270C

Work Order:

0807109

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & G			<u> Proje</u>	ct:	BAE NOIL	BAE Normolk Ship Repair					
Sample ID: LCSD-7858 Client ID: ZZZZZ Instrument: MS05_26	SampType: LCSD Batch ID: 7858 ColumnID: DB-5MS	TestCod Method:	e: 8270W_SIMI SW8270C ZB-5, 0.5 df	Onits: µg/L (SW3520C)		Prep Date: Analysis Date	rep Date: 7/28/200 nalysis Date: 7/30/200			356 6540	
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit		RPD Ref Val	%RPD		Qua
	2.44	0.200	10	0	24	46	120	3.7	41	20	RS
2-Methylnaphthalene	5.61	0.200	10	0	56	47	120	6.52	15		
Acenaphthene	5.67	0.200	10	0	57	50	120	6. 69	17	20	
Acenaphthylene	8.76	0.200	10	0	88	54	120	9.96	13		
Anthracene	8.39	0.200	10	0	84	56	100	9.59	13		
Benzo[a]anthracene	10.1	0.200	10	0	101	53	120	11.2	9.9		
Benzo[a]pyrene	10.1	0.200	10	0	101	45	124	11.4	12		
Benzo[b]fluoranthene	T. Control of the Con	0.200	10	0	113	38	123	11	2.7	20	
Benzo[g,h,i]perylene	11.3	0.200	10	0	107	45	124	12.3	14	20	
Benzo[k]fluoranthene	10.7	_	10	0	84	55	120	9.28	10	20	
Chrysene	8.38	0.200	10	0	40	42	127	3.99	0.2	20	S
Dibenz[a,h]anthracene	3.98	0.200	- -	0	92	54	120	10.6	14	20	
Fluoranthene	9.22	0.200	10	0	80	50	120	8.97	11	20	
Fluorene	·8.04	0.200	10		96	43	125	9.57	0.2	20	
Indeno[1,2,3-cd]pyrene	9.56	0.200	10	0		39	120	4.91	59	20	RS
Naphthalene	2.66	0.200	10	0	27	39 51	120	9.76			
Phenanthrene	8.71	0.200	10	0	87		128	10.6			
Pyrene	9.16	0.200	10	0	92	49	135	0.0		0	
Surr: Terphenyl-d14	7.46	0	10	0	75	51	195	U		Ū	

Qualifiers:

Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

ND Not Detected at the Practical Quantitation Limit (PQL)

R RPD exceeds accepted precision limit

Value exceeds the instrument calibration range

J Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

CLIENT: O'Brien & Gere Engineers, Inc

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SW8270C

Work Order:

0807109

Project:

BAE Northfolk Ship Repair

Sample ID: MB-7858 Client ID: ZZZZZ	SampType: MBLK Batch ID: 7858 ColumnID: DB-5MS	TestCod Method:	e: 8270W_SIM SW8270C ZB-5, 0.5 df	P Units: µg/L (SW3520C)		Prep Date: Analysis Dat	7/28/2 e: 7/30/2		RunNo: SeqNo:	143 376	56 538	
Instrument: MS05_26			, -, -,,	Parent Sample								
Analyte	QC Sample Result	PQL	SPK Added .	Result	%REC	LowLimit	HighLimit	RPD Ref Val		%RPD	RPDLimit	Qual
2-Methylnaphthalene	ND	0.200										
Acenaphthene	ND	0.200										
Acenaphthylene	ND	0.200										
Anthracene	ND	0.200										
Benzo[a]anthracene	ďИ	0.200										
Benzo[a]pyrane	ND ND	0.200										
Benzo[b]fluoranthene	ND	0.200										
Benzo[g,h,i]perylene	ND	0.200										
Benzo[k]fluoranthene	ND	0.200										
Chrysene	ND	0.200										
Dibenz[a,h]anthracene	ND	0.200										
Fluoranthene	ND	0.200										
Fluorene	ND	0.200										
Indeno[1,2,3-cd]pyrene	ND	0.200										
Naphthalene	ND	0.200										
Phenanthrene	ND	0.200										
Pyrene	ND	0.200			_	مند	4==					
Surr: Terphanyl-d14	8.28	0	10	0	83	51	135					

Qualifiers:

Analyte detected in the associated Method Blank В

Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

E Value exceeds the instrument calibration range R RPD exceeds accepted precision limit

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Date:

01-Aug-08

Page 1 of 5

Thursday, August 14, 2008

Ms. Tina Bickerstaff
O'Brien & Gere Engineers, Inc
8401 Corporate Dr.
Suite 400
Landover, MD 20785

TEL: 301-731-5622

Project: BAE NORTHFOLK SHIP REPAIR

RE: Analytical Results

Order No.: 0807110

Dear Ms. Tina Bickerstaff:

Life Science Laboratories, Inc. received 10 sample(s) on 7/24/2008 for the analyses presented in the following report.

Very truly yours, Life Science Laboratories, Inc.

Anthony Crescenzi Project Manager

CC:

Mr. Conrad Lawrence; O'Brien & Gere Engineers, Inc

Turnaround Time Required:

Cooler Temperature: 1.6°C DA See

Routine_____ Rush (Specify)

Life Science Laboratories, Inc. Brittonfield Lab

Comments:

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057 (315) 437-0200

Chain d	of Cus	stody
---------	--------	-------

Client: 0'Brien & Gere Engineers								Analysis/Method						
Project: BAE/NSR _ FWBE				1/9.	160,00	r /	14/		<i>'</i> . /	/				
Sampled by: Court (caur						/.	270 877		/	/	/			
Client Contact: 149 Bickers AP Phone # 44-3/223-9368														
Sample Description													·	
Sample Location	Date Collected	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers	/ ^Q 0)/ 	<u> </u>				_	Comments	
5B-111-01-5601	7/22/08	1145	54	G	L	1			ļ	<u> </u>			Fue/ 811	
SB-111-02-5601		1201	54	G	1	1					<u> </u>		Fuel Oil	
SB-114-01-5601		1045	54	G	1	1	<u> </u>			<u> </u>				
5B-114-02-5601		1120	54	C-	1	l								
58-105-01-5601		0912	54	ے	1	ŀ								
SB-105-02-5C01		0943	54	G-	1	L				<u> </u>		<u> </u>		
58-111-51-5401		1145	54	G	1	1							Fuel Oil	
SB-111-02-MS-5601		1201	50	4	1	1							Freibil	
SB-111-02-MSD-5601		1201	SL	G	1	1							Fuel Oil	
58-111-03-5601		1220	54	C	1	1							Fuel Oil	
5B-111-04-5601		1244	50	G	1	1							Fulloil	
SLEB-01-0/7/08	722/08	1000	W	<u>G</u> _	2	2								
Relinquished by Mycullyc	Da Da	le:7/23/	og Time	1816	Receive	d by:					D	ate:	Time:	
Relinquished by:		ile:	Time		Receive	d by:					D	ale:	Time:	
Relinquished by:	Da	ite:	Time	<u>-</u>	Receive	d by La	b:					ale: 7/2	24/08 Time: 12:5D	
Shipment Method: Airbill												·		
		cc	-: ve	590	1414	40 C	01	ra f	16	00	246	و ا		

Original - Laboratory Copy - Client FedEx Ship Manager - Print Your Label(s)

Page 1 of 1

Α1

Grani Matthews OBRIEN & GERE 4435 Waterfront Drive

GLEN ALLEN, VA 230603331

GLS953018/21/24

SHIP TO: 3154370200

BILL SENDER

Tony Crescenzi/Sample receiving Life Science Labs Inc-Brittonfield 5000 Brittonfield Parkway

Suite 200

East Syracuse, NY 13057

Dims: 24 X 24 X 36 IN

Delivery Address Bar Code

Ref# 3 Invoice# PO#

Dept#

TRK# 0201

7998 8595 2203

THU - 24JUL

STANDARD OVERNIGHT

XH SYRA

13057 NY-US **SYR**

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkiet printer.

Sample Receipt Checklist

Client Name: OBG-LANDOVER			Date and Tir	me Received:	7/:	24/2008 12:00:00 PM
Work Order Number 0807110			Received by	kac		
Checklist completed by: Y & Initials	7/24 Date	103	Reviewed	by: //	<u>بر</u>	7/24/08 Date
Matrix Carrie	r name:	<u>FedEx</u>				
Shipping container/cooler in good condition?		Yes 🗹	No 🗀	Not Present		
Custody seals intact on shipping container/cooler?		Yes 🗌	No 🗔	Not Present	\mathbf{Z}	
Custody seals intact on sample bottles?		Yes □	No 🗔	Not Present	✓.	
Chain of custody present?		Yes 🗹	No 🗀			
Chain of custody signed when relinquished and received?		Yes 🔽	No 🗔			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗀			
Samples in proper container/bottle?		Yes 🔽	No 🗀			
Sample containers intact?		Yes 🗹	No 🗆			.
Sufficient sample volume for indicated test?		Yes 🔽	No 🗆			
All samples received within holding time?		Yes 🔀	No 🗀			
Container/Temp Blank temperature in compliance?		Yes <u>✓</u>	No 🗔			
Water - VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA vials	submitte	ı 🗹
Water - nH acceptable upon receipt?		Yes 🗔	No 🗀	Not Applica	ble 🗹	

Comments:

Corrective Action::

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Analytical Results

StateCertNo: 00244

CLIENT:

O'Brien & Gere Engineers, Inc

Project: BAE Northfolk Ship Repair

W Order: 0807110 Matrix: SOIL

Inst. ID: MS05 26 ColumnID: DB-5MS

Revision: 08/01/08 7:55

Sample Size: 30 g %Moisture: 14.8

TestCode: 8270S SIMP

0807110-001A Lab ID:

Client Sample ID: SB-111-01-SL01 Collection Date: 07/22/08 11:45

07/24/08 12:00 Date Received: PrepDate:

07/28/08 17:35 7862/R14368

BatchNo: 1-SAMP-N9685.D FileID:

Col Type:

Analyte	Result Qua	ıl PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COM	MPOUNDS BY GC/MS			SW8270	С	(SW3550B)
2-Methylnaphthalene	1400	82	3.9	µg/Kg-dry	10	07/31/08 11:53
Acenaphthene	ND	82	5.3	µg/Kg-dry	10	07/31/08 11:53
Acenaphthylene	ND	82	2.3	µg/Kg-dry	10	07/31/08 11:53
Anthracene	520	82	7.7	µg/Kg-dry	10	07/31/08 11:53
Benzo[a]anthracene	230	82	3.5	µg/Kg-dry	10	07/31/08 11:53
Benzo[a]pyrene	240	82	3.8	μg/Kg-dry	10	07/31/08 11:53
Benzo[b]fluoranthene	ND	82	3.8	μg/Kg-dry	10	07/31/08 11:53
Benzo[g,h,i]perylene	150	82	3.9	μg/Kg-dry	10	07/31/08 11:53
Benzo[k]fluoranthene	ND	82	7.3	µg/Kg-dry	10	07/31/08 11:53
Chrysene	430	82	4.5	µg/Kg-dry	10	07/31/08 11:53
Dibenz[a,h]anthracene	ND	82	3.4	µg/Kg-dry	10	07/31/08 11:53
Fluoranthene	260	82	3.5	μg/Kg-dry	10	07/31/08 11:53
Fluorene	630	82	4.7	μg/Kg-dry	10	07/31/08 11:53
Indeno[1,2,3-cd]pyrene	43 J	82	2.8	μg/Kg-dry	10	07/31/08 11:53
Naphthalene	ND	82	3.2	μg/Kg-dry	/ 10	07/31/08 11:53
Phenanthrene	1700	82	3.1	μg/Kg-dry	10	07/31/08 11:53
Pyrene	1700	82	4.7	µg/Kg-dry	7 10	07/31/08 11:53
Surr: Terphenyl-d14	88.8	14-129	0	%REC	10	07/31/08 11:53

Q	ıali	fie	:rs
~	ш	410	

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 30 g

%Moisture: 16.1

TestCode: 8270S SIMP

StateCertNo: 00244

CLIENT: O'Brien & Gere Engineers, Inc BAE Northfolk Ship Repair

Project: W Order: 0807110

Matrix: SOIL

Inst. ID: MS05 26 ColumnID: DB-5MS

Revision: 08/01/08 7:55 Lab ID:

BatchNo:

FileID:

0807110-002A Client Sample ID: SB-111-02-SL01

Collection Date: Date Received: PrepDate:

07/22/08 12:01 07/24/08 12:00 07/28/08 17:35 7862/R14368

1-SAMP-N9686.D

Col Type:

Analyte	Result Qua	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COM	IPOUNDS BY GC/MS			SW8270	С	(SW3550B)
2-Methylnaphthalene	280	42	2.0	μg/Kg-dry	5	07/31/08 12:23
Acenaphthene	ND	42	2.7	µg/Kg-dry	5	07/31/08 12:23
Acenaphthylene	ND	42	1.2	μg/Kg-dry	5	07/31/08 12:23
Anthracene	210	42	3.9	ug/Kg-dry	5	07/31/08 12:23
Benzo[a]anthracene	120	42	1.8	μg/Kg-dry	5	07/31/08 12:23
Benzo[a]pyrene	120	42	1.9	µg/Kg-dry	5	07/31/08 12:23
Benzofolfluoranthene	ND	42	1.9	µg/Kg-dry	5	07/31/08 12:23
Benzo[g,h,i]perylene	73	42	2.0	µg/Kg-dry	5	07/31/08 12:23
Benzo[k]fluoranthene	ND	42	3.7	μg/Kg-dry		07/31/08 12:23
Chrysene	210	42	2.3	ug/Kg-dry	5	07/31/08 12:23
Dibenz[a,h]anthracene	ND	42	1.7	µg/Kg-dry	5	07/31/08 12:23
Fluoranthene	120	42	1.8	μg/Kg-dry	5	07/31/08 12:23
Fluorene	130	42	2.4	μg/Kg-dry	5	07/31/08 12:23
Indeno[1,2,3-cd]pyrene	23 J	42	1.4	µg/Kg-dry	<i>i</i> 5	07/31/08 12:23
Naphthalene	ND	42	1.6	μg/Kg-dry	, 5	07/31/08 12:23
Phenanthrene	850	42	1.5	μg/Kg-dr)	, 5	07/31/08 12:23
Pyrene	810	42	2.4	μg/Kg-dry	<i>t</i> 5	07/31/08 12:23
Surr: Terphenyl-d14	91.4	14-129	0	%REC	5	07/31/08 12:23

Oug	lifiera	3
Oua	HILLICE S	3

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

CLIENT:

O'Brien & Gere Engineers, Inc

Project:

BAE Northfolk Ship Repair

W Order:

0807110 SOIL

Matrix: Inst. ID:

MS05 26

ColumnID: DB-5MS

07/31/08 9:17

Sample Size: 30 g %Moisture: 14.5

TestCode: 8270S SIMP

Lab ID:

0807110-003A

Client Sample ID: SB-114-01-SL01

Collection Date: Date Received:

07/22/08 10:45 07/24/08 12:00

PrepDate: BatchNo:

07/28/08 17:35 7862/R14356

FileID:

1-SAMP-N9670.D

Revision: Col Type:

Analyte	Result Qua	i PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS			SW8270	С	(SW3550B)
2-Methylnaphthalene	0.58 J	B.2	0.39	_ μg/Kg-dry	1	07/30/08 20:51
Acenaphthene	ND	8.2	0.53	µg/Kg-dry	1	07/30/08 20:51
Acenaphthylene	0.68 J	8.2	0.23	μg/Kg-dry	1	07/30/08 20:51
Anthracene	ND	8.2	0.77	µg/Kg-dry	1	07/30/08 20:51
Benzo[a]anthracene	2.4 J	8.2	0.35	μg/Kg-dry	1 1	07/30/08 20:51
Benzo(a)pyrene	4.3 J	8.2	0.37	μg/Kg-dry	1	07/30/08 20:51
Benzo[b]fluoranthene	7.2 J	8.2	0.37	μg/Kg-dry		07/30/08 20:51
Benzo[g,h,i]perylene	4.4 J	8.2	0.39	μg/Kg-dry	, 1	07/30/08 20:51
Benzo[k]fluoranthene	2.4 J	8.2	0.73	μg/Kg-dry	, 1	07/30/08 20:51
Chrysene	3.9 J	8.2	0.44	µg/Kg-dry		07/30/08 20:51
Dibenz[a,h]anthracene	1.1 J	8.2	0.34	μg/Kg-dŋ		07/30/08 20:51
Fluoranthene	4.1 J	8.2	0.35	µg/Kg-dŋ		07/30/08 20:51
Fluorene	ND	8.2	0,47	µg/Kg-dr	y 1	07/30/08 20:51
Indeno(1,2,3-cd]pyrene	3.2 J	8.2	0.28	µg/Kg-dŋ		07/30/08 20:51
Naphthalene	0.48 J	8.2	0.32	μg/Kg-dr	-	07/30/08 20:51
Phenanthrene	2.8 J	8.2	0.30	μg/Kg-dn		07/30/08 20:51
Pyrene	4.9 J	8.2	0.47	μg/Kg-dr		07/30/08 20:51
Surr: Terphenyl-d14	75.6	14-129	0	%REC	1	07/30/08 20:51

Oual	ifiare

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim/Conf. column %D or RPD exceeds limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

LSL

Life Science Laboratories, Inc.

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 30 g

%Moisture: 12.6

TestCode: 8270S SIMP

StateCertNo: 00244

CLIENT: O'Brien & Gere Engineers, Inc

Project: BA

BAE Northfolk Ship Repair

W Order: 0807110 Matrix: SOIL

Inst. ID: MS05 26 ColumnID: DB-5MS

Revision: 07/31/08 9:17

Lab ID:

0807110-004A

Client Sample ID: SB-114-02-SL01

Collection Date: Date Received:

PrepDate:

BatchNo:

FileID:

07/22/08 11:20 07/24/08 12:00 07/28/08 17:35 7862/R14356

7862/R14356 1-SAMP-N9667.D

Col Type:

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COI	MPOUNDS BY GC/MS	_	<u> </u>	SW8270	С	(SW3550B)
2-Methylnaphthalene	0.75 J	8.0	0.38	µg/Kg-dry	1	07/30/08 19:22
Acenaphthene	ND	8.0	0.51	μg/Kg-dry	1	07/30/08 19:22
Acenaphthylene	1.1 J	8.0	0.23	μg/Kg-dry	1	07/30/08 19:22
Anthracene	2.1 J	8.0	0.76	μg/Kg-dry	1	07/30/08 19:22
Benzo[a]anthracene	6.0 J	8.0	0.34	μg/Kg-dry	1	07/30/08 19:22
Benzo[a]pyrene	9.7	8.0	0.37	µg/Kg-dry	1	07/30/08 19:22
Benzo[b]fluoranthene	13	8.0	0.37	μg/Kg-dry	1	07/30/08 19:22
Benzo[g.h.i]perylene	7.4 J	8.0	0.38	μg/Kg-dry	1	07/30/08 19:22
Benzo[k]fluoranthene	4.6 J	8.0	0.71	µg/Kg-dry	1	07/30/08 19:22
Chrysene	7.3 J	8.0	0.43	μg/Kg-dry	1	07/30/08 19:22
Dibenz[a,h]anthracene	2.2 J	8.0	0.33	µg/Kg-dry		07/30/08 19:22
Fluoranthene	7.4 J	8.0	0.34	μg/Kg-dry	1	07/30/08 19:22
Fluorene	ND	8.0	0.46	μg/Kg-dry	1	07/30/08 19:22
Indeno[1,2,3-cd]pyrene	6.1 J	8.0	0.27	μg/Kg-dry	1	07/30/08 19:22
Naphthalene	2.7 J	8.0	0.31	μg/Kg-dry	1	07/30/08 19:22
Phenanthrene	2.1 J	8.0	0.30	μg/Kg-dry	r 1	07/30/08 19:22
Pyrene	9.2	8.0	0.46	ug/Kg-dry	r 1	07/30/08 19:22
Surr: Terphenyl-d14	72.8	14-129	0	%REC	1	07/30/08 19:22

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

CLIENT: Project:

O'Brien & Gere Engineers, Inc

BAE Northfolk Ship Repair

W Order:

0807110

Matrix:

Revision: Col Type: SOIL

Inst. ID:

MS05 26

ColumnID: DB-5MS

07/31/08 9:17

Sample Size: 30 g

TestCode: 8270S SIMP

%Moisture: 17.1

Lab ID:

0807110-005A Client Sample ID: SB-105-01-SL01

Collection Date: Date Received:

07/22/08 9:22 07/24/08 12:00

PrepDate: BatchNo:

07/28/08 17:35 7862/R14356

FileID:

1-SAMP-N9665.D

Analyte	_

Analyte	Result Qual	PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS	 .		SW8270	C	(SW3550B)
2-Methylnaphthalene	ND	8.4	0.40	µg/Kg-dry	1	07/30/08 18:22
Acenaphthene	. ND	8.4	0.54	µg/Kg-dry	1	07/30/08 18:22
Acenaphthylene	ND	8.4	0.24	μg/Kg-dry	1	07/30/08 18:22
Anthracene	ND	8.4	0.80	µg/Kg-dry	1	07/30/08 18:22
Benzo[a]anthracene	ND	8.4	0.36	µg/Kg-dry	1	07/30/08 18:22
Benzo[a]pyrene	ND	8.4	0.39	μ g/Kg-d ry	1	07/30/08 18:22
Benzo[b]fluoranthene	ND	8.4	0.39	μg/Kg-dry	1	07/30/08 18:22
Benzo[g,h,i]perylene	ND	8.4	0.40	μg/Kg-dry	1	07/30/08 18:22
Benzo[k]fluoranthene	. ND	8.4	0.75	μg/Kg-dry	1	07/30/08 18:22
Chrysene	ND	8.4	0.46	μg/Kg-dry	1	07/30/08 18:22
Dibenz[a,h]anthracene	ND	8.4	0.35	μg/Kg-dry		07/30/08 18:22
Fluoranthene	ND	8.4	0.36	μg/Kg-dry	1	07/30/08 18:22
Fluorene	ND	8.4	0.48	μg/Kg-dry	1	07/30/08 18:22
Indeno[1,2,3-cd]pyrene	ND	8.4	0.29	μg/Kg-dry	1	07/30/08 18:22
Naphthalene	ND	8.4	0.33	μg/Kg-dry	1	07/30/08 18:22
Phenanthrene	ND	8.4	0.31	μg/Kg-dry	1	07/30/08 18:22
Pyrene	ND	8.4	0.48	μg/Kg-dry	1	07/30/08 18:22
Surr: Terphenyl-d14	77.5	14-129	0	%REC	1	07/30/08 18:22

Qualifiers:

Value exceeds Maximum Contaminant Level

E Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim,/Conf. column %D or RPD exceeds limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Print Date: 08/01/08 7:56

376543

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

O'Brien & Gere Engineers, Inc

Project:

BAE Northfolk Ship Repair

W Order: Matrix:

0807110 SOIL

Inst. ID:

MS05 26

ColumnID: DB-5MS

07/31/08 9:17

Sample Size: 30 g %Moisture: 16.4

TestCode: 8270S SIMP Lab ID:

0807110-006A

Client Sample ID: SB-105-02-SL01

Collection Date: Date Received:

07/22/08 9:43 07/24/08 12:00

PrepDate: BatchNo:

07/28/08 17:35 7862/R14356

FileID:

1-SAMP-N9668.D

Revision:
Col Type:

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COM	MPOUNDS BY GC/MS			SW8270	С	(SW3550B)
2-Methylnaphthalene	2.5 J	8.4	0.39	μg/Kg-dry	1	07/30/08 19:52
Acenaphthene	2.7 J	8.4	0.54	μg/Kg-dry	1	07/30/08 19:52
Acenaphthylene	3.3 J	8.4	0.24	μg/Kg-dry	1 1	07/30/08 19:52
Anthracene	12	8.4	0.79	μg/Kg-dry	/ 1	07/30/08 19:52
Benzo[a]anthracene	20	8.4	D.36	μg/Kg-dry	/ 1	07/30/08 19:52
Benzo[a]pyrene	20	8.4	0.38	µg/Kg-dry	, 1	07/30/08 19:52
Benzo[b]fluoranthene	24	8.4	0.38	μg/Kg-dry	, 1	07/30/08 19:52
Benzo[g,h,i]perylene	12	8.4	0.39	μg/Kg-dr)	/ 1	07/30/08 19:52
Benzo[k]fluoranthene	12	8.4	0.74	μg/Kg-dry		07/30/08 19:52
Chrysene	18	8.4	0.45	μg/Kg-dŋ		07/30/08 19:52
Dibenz[a,h]anthracene	3.1 J	8.4	0.35	μg/Kg-dr	y 1	07/30/08 19:52
Fluoranthene	62	8.4	0.36	μg/Kg-dr	y 1	07/30/08 19:52
Fluorene	10	8.4	0,48	μg/Kg-dr		07/30/08 19:52
Indeno[1,2,3-cd]pyrene	10	8.4	0.29	μg/Kg-dr		07/30/08 19:52
Naphthalene	4.5 J	8.4	0.32	μg/Kg-dr		07/30/08 19:52
Phenanthrene	76	8.4	0.31	μg/Kg-dr	y 1	07/30/08 19:52
	49	8.4	0.48	μg/Kg-dr		07/30/08 19:52
Pyrene Surr: Terphenyl-d14	70.7	14-129	0	%REC	1	07/30/08 19:52

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
 - Spike Recovery outside accepted recovery limits

LSL

Life Science Laboratories, Inc.

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

CLIENT: O'Brien & Gere Engineers, Inc

Project:

BAE Northfolk Ship Repair

Client Sample ID: *SB-111-51-SL01*Collection Date: 07/22/08 11:45

Lab ID:

0807110-007A

W Order: 0807110 Matrix: SOIL

Date Received:

PrepDate:

BatchNo:

FileID:

07/22/08 11:45 07/24/08 12:00

Inst. ID: MS05 26

Sample Size: 30 g %Moisture: 16.9 07/28/08 17:35 7862/R14368

ColumnID: DB-5MS Revision: 08/01/08 7:55

TestCode: 8270S SIMP

1-SAMP-N9684.D

Col Type:

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS			SW8270	С	(SW3550B)
2-Methylnaphthalene	570	42	2.0	μg/Kg-dry	5	07/31/08 11:23
Acenaphthene	ND	42	2.7	μg/Kg-dry	5	07/31/08 11:23
Acenaphthylene	ND	42	1.2	μg/Kg-dry	5	07/31/08 11:23
Anthracene	190	42	4.0	μg/Kg-dry	5	07/31/08 11:23
Benzo[a]anthracene	98	42	1.8	μg/Kg-dry		07/31/08 11:23
= = =	89	42	1.9	μg/Kg-dry		07/31/08 11:23
Benzo[a]pyrene	ND	42	1.9	μg/Kg-dry		07/31/08 11:23
Benzo[b]fluoranthene	59	42	2.0	μg/Kg-dry		07/31/08 11:23
Benzo[g,h,i]perylene	ND	42 42	3.7	μg/Kg-dry		07/31/08 11:23
Benzo[k]fluoranthene	170	42 42	2.3	μg/Kg-dn		07/31/08 11:23
Chrysene	ND	42 42	1.7	μg/Kg-dn		07/31/08 11:23
Dibenz[a,h]anthracene	98	4 2 42	1.8	μg/Kg-dn		07/31/08 11:23
Fluoranthene		42 42	2.4	μg/Kg-dn		07/31/08 11:23
Fluorene	230		1.4	μg/Kg-dr		07/31/08 11:23
Indeno[1,2,3-cd]pyrene	15 J	42		μg/Kg-dr		07/31/08 11:23
Naphthalene	ND	42	1.6	μg/Kg-dr μg/Kg-dr		07/31/08 11:23
Phenanthrene	740	42	1.6			07/31/08 11:23
Pyrene	670	42	2.4	μg/Kg-dr		07/31/08 11:23
Surr: Terphenyl-d14	87.5	14-129	0	%REC	5	U//3//UQ 11:23

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- I Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 08/01/08 7:56

376974

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

8270S SIMP

Sample Size: 30 g

%Moisture: 20.8

TestCode:

StateCertNo: 00244

O'Brien & Gere Engineers, Inc CLIENT:

Project:

BAE Northfolk Ship Repair

W Order: Matrix:

0807110 SOIL

Inst. ID:

MS05 26

ColumnID: DB-5MS

08/01/08 7:55

Lab ID:

0807110-008A

Client Sample ID: SB-111-03-SL01 07/22/08 12:20

Collection Date: Date Received:

07/24/08 12:00

PrepDate: BatchNo:

07/28/08 17:35 7862/R14368

FileID:

1-SAMP-N9689.D

Revision: Col Type:

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/MS	<u> </u>		SW8270	С	(SW3550B)
2-Methylnaphthalene	86	44	2.1	μg/Kg-dry	5	07/31/08 13:52
- ·	ND	44	2.8	μg/Kg-dry	5	07/31/08 13:52
Acenaphthene	ND	44	1.3	μg/Kg-dry		07/31/08 13:52
Acenaphthylene	82	44	4.2	μg/Kg-dry	5	07/31/08 13:52
Anthracene	33 J	44	1.9	µg/Kg-dry		07/31/08 13:52
Benzo[a]anthracene	30 J	44	2.0	μg/Kg-dr)		07/31/08 13:52
Benzo[a]pyrene	ND	44	2,0	μg/Kg-dry		07/31/08 13:52
Benzo[b]fluoranthene	ND ND	44	2.1	µg/Kg-dry		07/31/08 13:52
Benzo[g,h,i]perylene	ND ND	44	3.9	μg/Kg-dn		07/31/08 13:52
Benzo[k]fluoranthene	•	44	2.4	µg/Kg-dr		07/31/08 13:52
Chrysene	59	44	1.8	μg/Kg-dr		07/31/08 13:52
Dibenz[a,h]anthracene	ND		1.9	μg/Kg-dr		07/31/08 13:52
Fluoranthene	ND	44	2.5	μg/Kg-dr		07/31/08 13:52
Fluorene	150	44		μg/Kg-dr		07/31/08 13:52
Indeno[1,2,3-cd]pyrene	ND	44	1.5	μg/Kg-dr μg/Kg-dr		07/31/08 13:52
Naphthalene	ND	44	1.7			07/31/08 13:52
Phenanthrene	160	44	1.6	µg/Kg-dr	•	07/31/08 13:52
Pyrene	250	44	2.5	μg/Kg-dr		07/31/08 13:52
Surr: Terphenyl-d14	89.1	14-129	0	%REC	5	0113(100 13.32

Ou	ali	fier:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
 - Spike Recovery outside accepted recovery limits

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244

O'Brien & Gere Engineers, Inc CLIENT: Project: BAE Northfolk Ship Repair

0807110 W Order:

SOIL Matrix:

MS05 26 Inst. ID: ColumnID: DB-5MS Revision:

08/01/08 7:55

Sample Size: 30 g %Moisture: 17.2

TestCode: 8270S SIMP

0807110-009A Lab ID:

Client Sample ID: SB-111-04-SL01

07/22/08 12:44

Collection Date: Date Received:

PrepDate:

BatchNo:

FileID:

07/24/08 12:00 07/28/08 17:35 7862/R14368

1-SAMP-N9690.D

Col Type:

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COM	POUNDS BY GC/MS		-	SW8270	С	(SW3550B)
2-Methylnaphthalene	44	42	2.0	μg/Kg-dry	5	07/31/08 14:22
Acenaphthene	ND	42	2.7	μg/Kg-dry	5	07/31/08 14:22
Acenaphthylene	ND	42	1.2	μg/Kg-dry	5	07/31/08 14:22
Anthracene	110	42	4.0	μg/Kg-dry	5	07/31/08 14:22
Benzo[a]anthracene	50	42	1.8	μg/Kg-dry	5	07/31/08 14:22
Benzo[a]pyrene	43	42	1.9	μg/Kg-dry	5	07/31/08 14:22
Benzo[b]fluoranthene	ND	42	1.9	μg/Kg-dry	5	07/31/08 14:22
Benzo[g,h,i]perylene	29 J	42	2.0	μg/Kg-dry		07/31/08 14:22
Benzo[k]fluoranthene	ND	42	3.7	μg/Kg-dry		07/31/08 14:22
	87	42	2.3	μg/Kg-dry		07/31/08 14:22
Chrysene Dibenz[a,h]anthracene	ND	42	1.8	μg/Kg-dry		07/31/08 14:22
Fluoranthene	51	42	1.8	μg/Kg-dry		07/31/08 14:22
Fluorene	140	42	2.4	μg/Kg-dry		07/31/08 14:22
Indeno[1,2,3-cd]pyrene	ND	42	1.4	μg/Kg-dry		07/31/08 14:22
	ND	42	1.6	μg/Kg-dry		07/31/08 14:22
Naphthalene	190	42	1.6	μg/Kg-dry		07/31/08 14:22
Phenanthrene	400	42	2.4	μg/Kg-dry		07/31/08 14:22
Pyrene Surr: Terphenyl-d14	85.1	14-129	0	%REC	5	07/31/08 14:22

Qualifiers:	•	Value exceeds Maximum Contaminant Level		Analyte detected in the associated Method Blank
Commers:	E	Value exceeds the instrument calibration range		Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL		Not Detected at the Practical Quantitation Limit (PQL)
	P	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 08/01/08 7:56

376980

Analytical Results

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 00244 0807110-010A

CLIENT: O'Brien & Gere Engineers, Inc

Project:

BAE Northfolk Ship Repair

W Order: 0807110 Matrix:

Inst. ID:

MS05 26

ColumnID: DB-5MS Revision: 07/31/08 9:17

WATER Sample Size: 1000 mL

%Moisture:

TestCode: 8270W SIMP

Client Sample ID: SLEB-01-0708

07/22/08 10:00 **Collection Date:** Date Received:

Lab ID:

BatchNo:

FileID:

07/24/08 12:00 PrepDate: 07/28/08 10:23

7858/R14356 1-SAMP-N9666.D

Col Type:

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
SEMIVOLATILE ORGANIC COM	POUNDS BY GC/M	 S - SIM		SW8270	C	(SW3520C)
2-Methylnaphthalene	ND	0.200	0.0140	µg/L	1	07/30/08 18:52
Acenaphthene	ND	0.200	0.0140	μg/L	1	07/30/08 18:52
Acenaphthylene	ND	0.200	0.0110	μg/L	1	07/30/08 18:52
Anthracene	ND	0.200	0.0160	μg/L	1	07/30/08 18:52
Benzo[a]anthracene	ND	0.200	0.0150	μg/L	1	07/30/08 18:52
Benzo[a]pyrene	ND	0.200	0.0130	μg/L	1	07/30/08 18:52
Benzo[b]fluoranthene	ND	0.200	0.0150	µg/L	1	07/30/08 18:52
Benzo[g,h,i]perylene	ND	0.200	0.00940	µg/L	1	07/30/08 18:52
Benzo[k]fluoranthene	ND	0.200	0.0180	μg/L	1	07/30/08 18:52
Chrysene	ND	0.200	0.0210	μg/L	1	07/30/08 18:52
Dibenz[a,h]anthracene	ND	0.200	0.0120	µg/L	1	07/30/08 18:52
Fluoranthene	ND	0.200	0.0170	μg/L	1	07/30/08 18:52
Fluorene	ND	0.200	0.0160	μg/L	1	07/30/08 18:52
Indeno[1,2,3-cd]pyrene	ND	0.200	0.0130	μg/L	1	07/30/08 18:52
Naphthalene	ND	0.200	0.00980	μg/L	1	07/30/08 18:52
Phenanihrene	ND	0.200	0.0130	μg/L	1	07/30/08 18:52
Pyrene	ND	0.200	0.0160	μg/L	1	07/30/08 18:52
Surr: Terphenyl-d14	80.6	51-135	0	%REC	1	07/30/08 18:52

Δ	- •	٠.	
On	aı	H	CES

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- P Prim_/Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 08/01/08 7:56

376544

Analytical Results

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 1000 mL

StateCertNo: 00244

CLIENT: O'Brien & Gere Engineers, Inc BAE Northfolk Ship Repair Project:

W Order: 0807110

Matrix: WATER Inst. ID:

Col Type:

MS05 26 ColumnID: DB-5MS

07/31/08 9:17 Revision:

Lab ID:

0807110-010A Client Sample ID: SLEB-01-0708

Collection Date: Date Received:

07/22/08 10:00 07/24/08 12:00 07/28/08 10:23

PrepDate: BatchNo:

7858/R14356

%Moisture: 8270W SIMP FileID: TestCode:

1-SAMP-N9666.D

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANIC CO	MPOUNDS BY GC/M	S - SIM		SW8270C		(SW3520C)	
2-Methylnaphthalene	ND	0.200	0.0140	μg/L	1	07/30/08 18:52	
Acenaphthene	dИ	0.200	0.0140	μg/L	1	07/30/08 18:52	
Acenaphthylene	ND	0.200	0.0110	μg/L	1	07/30/08 18:52	
Anthracene	ND	0,200	0.0160	μg/L	1	07/30/08 18:52	
Benzo[a]anthracene	ND	0.200	0.0150	µg/L	1	07/30/08 18:52	
Benzo[a]pyrene	ND	0.200	0.0130	μg/L	1	07/30/08 18:52	
Benzo[b]fluoranthene	ND	0.200	0.0150	μg/L	1	07/30/08 18:52	
Benzo[g,h,i]perylene	ND	0.200	0.00940	µg/L	1	07/30/08 18:52	
Benzo[k]fluoranthene	ND	0.200	0.0180	μg/L	1	07/30/08 18:52	
Chrysene	ND	0.200	0,0210	µg/L	1	07/30/08 18:52	
Dibenz[a,h]anthracene	ND	0.200	0.0120	μg/L	1	07/30/08 18:52	
Fluoranthene	ND	0.200	0,0170	μg/L	1	07/30/08 18:52	
Fluorene	ND	0.200	0.0160	μg/L	1	07/30/08 18:52	
Indeno[1,2,3-cd]pyrene	ND	0.200	0.0130	μg/L	1	07/30/08 18:52	
Naphthalene	ND	0.200	0.00980	μg/L	1	07/30/08 18:52	
Phenanthrene	ND	0.200	0.0130	μg/L	1	07/30/08 18:52	
Pyrene	ND	0.200	0.0160	μg/L	1	07/30/08 18:52	
Surr: Terphenyl-d14	80.6	51-135	0	%REC	1	07/30/08 18:52	

Qualifiers	ì
------------	---

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Print Date: 08/01/08 7:56

376544

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REFURT

Method:

SW8270C

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & Gere	Engineers Inc					Proje	ct:	DAL NON		P F		
CLIENT: O'Brien & Gere Sample ID: 0807110-002AMS Client ID: SB-111-02-SL01 Instrument: MS05_26	SampType: MS Batch ID: 7862 ColumnID: DB-5MS	TestCode Method:	: 8270S_SIMP SW8270C ZB-5, 0.5 df	Units: µg/Kg-d (SW3550B)	ry	Prep Date: Analysis Date	7/28/200 e: 7/31/200	,	RunNo: SeqNo:	14368 37697		_
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC			RPD Ref Val	%	RPD R	PDLimit	Qual
	470	42	397	284	47	30	111					s
2-Methylnaphthalene	447	42	397	0	113	28	110					•
Acenaphthene	407	42	397	0	103	23	126					
Acenaphthylens	520	42	397	211	78	28	136					
Anthracene	402	42	397	122	70	31	146					
Benzo[a]anthracene	482	42	397	115	92	28	128					
Benzo[a]pyrene	529	42	397	0	133	30	139					
Benzo[b]flucranthene	277	42	397	72.8	51	21	149					s
Benzo[g,h,i]perylene	524	42	397	0	132	42	129					3
Benzo[k]fluoranthene		42	397	208	54	39	134					
Chrysene	422	42	397	0	70	30	138					
Dibenz[a,h]anthracene	277	42 42	397	123	87	30	142					
Fluoranthene	469		397	127	87	27	116					
Fluorene	470	_ 42	397	23.1	66	17	164					
Indeno[1,2,3-cd]pyrene	284	42		0	90	29	106					
Naphthalene	358	42	397	850	0	32	127					S
Phenanthrene	801	42	397	810	3		130					S
Pyrene	822	42	397		87 87	14	129					
Surr: Terphenyl-d14	344	0	397	0	Q1		4.					

Qualifiers:

Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

U Not Detected at the MDC or RL

E Value exceeds the instrument calibration range

R RPD exceeds accepted precision limit

Analyte detected below the PQL

S Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SW8270C

Work Order:

0807110

BAE Northfolk Ship Repair

CLIENT: O'Brien & Gere	Engineers, Inc			···		Proje	et:	BAE Nort	hfolk Ship Re	pair	
Sample ID: 0807110-002AMSD Client ID: SB-111-02-SL01 Instrument: MS05_26		TestCode Method:	e: 8270S_SIMP SW8270C ZB-5, 0.5 df	Units: µg/Kg-di (SW3550B)	Ty .	Prep Date: Analysis Date	7/28/200 e: 7/31/200	•		368 6978	
- Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit		RPD Ref Val	%RPD		Qual
2-Methylnaphthalene	533	42	397	284	63	30	111	470	13	50	_
Acenaphthene	469	42	397	0	118	28	110	447	4.7	50	S
Acenaphthylene	407	42	397	0	102	23	126	407	0.1	50	
Anthracene	578	42	397	211	92	28	136	520	10	50	
Benzo[a]anthracene	424	42	397	122	76	31	146	402	5.4	50	
Benzo[a]pyrene	501	42	397	115	97	28	128	482	3.9	50	_
Benzo[b]fluoranthene	584	42	397	0	147	30	139	529	9.8	50	S
Benzo[g,h,i]perylene	259	42	397	72.8	47	21	149	277	6,9	50	
Benzo[k]fluoranthene	484	42	397	C	122	42	129	524	8.0	50	
Chrysene	444	42	397	208	59	39	134	422	4.9	50	
Dibenz[a,h]anthracene	263	42	397	0	66	30	138	277	5,3	50	
Fluoranthene	497	42	397	123	94	30	142	469	5.8	.50	
Fluorene	518	42	397	127	99	27	116	470	9.7	50	
Indeno[1,2,3-od]pyrene	252	42	397	23.1	58	17	164	284	12	50	
Naphthalene	362	42	397	0	91	29	106	358	1.2	50	
Phenanthrene	1020	42	397	850	42	32	127	801	24	50	
	1010	42	397	810	49	28	130	822	20	50	
Pyrene Surr: Terphenyl-d14	346	D	397	0	87	14	129	0		0	

Qualifiers:

B Analyte detected in the associated Method Blank

Not Detected at the Practical Quantitation Limit (PQL) ND

Not Detected at the MDC or RL

Value exceeds the instrument calibration range

R RPD exceeds accepted precision limit

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

O'Brien & Gerc Engineers, Inc

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT:

(315) 437-0200

ANALYTICAL QC SUMMARY RESERT

Method:

SW8270C

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

Sample ID: LCS-7858 Client ID: ZZZZZ Instrument: MS05_26	SampType: LCS Batch ID: 7858 ColumnID: DB-5MS	TestCod Method:	e: 8270W_SIN SW8270C ZB-5, 0.5 df	IP Units: µg/L (SW3520C)		Prep Date: Analysis Da	7/28/20 te: 7/30/20		RunNo: SeqNo:	14356 376539	
_	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimil	RPD Ref Val	%F	RPD RPDL	mit Qual
Analyte	3.70	0.200	10	0	37	46	120				S
2-Methylnaphthalene	6.52	0.200	10	0	65	47	120				
Acenaphthene	6.69	0.200	10	0	67	50	120				
Acenaphthylene Anthracene	9.96	0.200	10	0	100	54	120				
Benzo[a]anthracene	9.59	0.200	10	0	96	56	100				
Benzo[a]pyrene	11.2	0.200	10	0	112	53	120				
Benzo[b]fluoranthene	11.4	0.200	10	0	114	45	124				
Benzo[g,h,i]perylene	11.0	0.200	10	0	110	38	123				
Benzo[k]fluoranthene	12.3	0.200	10	0	123	45	124				
Chrysene	9.28	0.200	10	D	93	55	120				_
Dibenz[a,h]anthracene	3.99	0.200	10	0	40	42	127				S
Fluoranthene	10.6	0.200	10	0	106	54	120				
Fluorene	8.97	0.200	10	0	90	50	120				
Indeno[1,2,3-cd]pyrene	, 9. 5 7	0.200	10	.0	96	43	125				
Naphthalene	4.91	0.200	10	0	49	39	120				
Phenanthrene	9.76	0.200	10	0	98	51	120				
Pyrene	10.6	0.200	10	0	105	49	128	4.			
Surr: Terphenyl-d14	8.15	0	10	0	81	51	135				

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

U Not Detected at the MDC or RL

ank

Value exceeds the instrument calibration range

R RPD exceeds accepted precision limit

Analyte detected below the PQL

S Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPURT

Method:

SW8270C

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & G	ere Engineers, Inc					Proje	et:	BAE Nort	hfolk Ship Re	pair	
Sample ID: LCSD-7858 Client ID: ZZZZZ Instrument: MS05_26	SampType: LCSD Batch ID: 7858 ColumnID: DB-5MS	TestCod Method:	_	Units: µg/L (SW3520C)		Prep Date: Analysis Dat	7/28/200 e: 7/30/200			356 6540	
- Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	2.44	0.200	10	0	24	46	120	3.7	41	20	RS
Acenaphthene	5.61	0,200	10	0	56	47	120	6.52		20	
Acenaphthylene	5.67	0.200	10	0	57	50	120	6.69	17	20	
Acenaphinylene Anthracene	8.76	0.200	10	0	88	54	120	9.96	13	20	
Benzo(a)anthracene	8.39	0.200	10	0	84	56	100	9.59	13	20	
	10.1	0.200	10	0	101	53	120	11.2		20	
Benzo[a]pyrene Benzo[b]fluoranthene	10.1	0.200	10	0	101	45	124	11.4	12	20	
	11.3	0.200	10	0	113	38	123	11	2.7	20	
Benzo[g,h,i]perylene	10.7	0.200	10	0	107	45	124	12.3		20	
Benzo[k]fluoranthene	8.38	0.200	10	0	84	55	120	9.28		20	
Chrysene	3.98	0.200	10	0	40	42	127	3.99	0.2	20	S
Dibenz[a,h]anthracene	9,22	0.200	10	0	92	54	120	10.6	14	20	
Fluoranthene	8.04	0.200	10	0	80	50	120	8.97	11	20	
Fluorene	9.56	0.200	10	0	96	43	125	9.57	0.2	20	
Indeno[1,2,3-cd]pyrene	2.66	0.200	10	0	27	39	120	4.91	59	20	RS
Naphthalene	. 8.71	0.200	10	0	87	51	120	9.76	11	20	
Phenanthrene		0.200	10	0	92	49	128	10.6	14	20	
Pyrene Surr: Terphenyl-d14	9.16 7.46	0.200	10	ō	75	51	135	0		0	

Qualiflers:

Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

Analyte detected in the associated Method Blank

R RPD exceeds accepted precision limit

E Value exceeds the instrument calibration range

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Date:

01-Aug-08

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SW8270C

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & C	iere Engineers, Inc	_				Proje	ct:	BAE NO	TIMOIK S	mp Ke	pair	_
Sample ID: LCS-7862 Client ID: ZZZZZ Instrument: MS05_26	SampType: LCS Batch ID: 7862 ColumnID: DB-5MS	TestCode Method:	8270S_SIMF SW8270C ZB-5, 0.5 df	Onits: µg/Kg (SW3550B)		Prep Date: Analysis Date	7/28/20 e: 7/30/20		RunNo: SeqNo:		356 3536	
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC			RPD Ref Val		%RPD	RPDLimit	Qual
2-Methylnaphthalene	304	7.0	333	0	91	. 30	111					
Acenaphthene	330	7.0	333	0	99	28	110					
Acenaphthylene	339	7.0	333	0	102	23	126					
Anthracene	338	7.0	333	0	101	28	136					
Benzo[a]anthracene	312	7.0	333	0	94	31	146					
Benzo[a]pyrene	1 388	7.0	333	0	117	28	128					
Benzo[b]fluoranthena	400	7.0	333	0	120	30	139					
Benzo[g,h,i]perylene	429	7.0	333	0	129	21	149					
Benzolk]fluoranthene	380	7.0	333	0	114	42	129					
Chrysene	322	7.0	333	0	97	39	134					
Dibenz[a,h]anthracene	409	7.0	333	0	123	30	138					
Fluoranthene	339	7.0	333	0	102	30	142					
	345	7.0	333	0	104	27	116					
Fluorene	416	7.0	333	ū	125	17	164					
Indeno[1,2,3-cd]pyrene	350	7.0	333	0	105	29	106					
Naphthalene	330	7.0	333	0	99	32	127					
Phenanthrene	331	7.0	333	O	99	28	130					
Pyrene Surr: Terphenyl-d14	288	0	333	0	86	14	129					

Qualifiers:

ND Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

Analyte detected in the associated Method Blank

R RPD exceeds accepted precision limit

E Value exceeds the instrument calibration range

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Date:

01-Aug-08

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc

ANALYTICAL QC SUMMARY REPÖRT

Method: SW8270C

Work Order: 0807110

Project: **BAE Northfolk Ship Repair**

CLIENT: O'Brien & Gere Engineers, Inc	Engineers, Inc			l		Project:	Ħ	BAE Northfolk Ship Repair	olk Ship Rep	pair	
		5		н		Dian Date:	700/2014		nNo: 14356	א א	
Sample ID: LCSD-7862	SampType: LCSD	TestCode:	te: 8270S_SIMP			Prep Date:				Ö	
Client ID: ZZZZZ	Batch ID: 7862	Method:	SW8270C	(SW3550B)		Analysis Date:	: 7/30/2008		SeqNo: 376537	537	
Instrument: MS05_26	ColumniD: DB-5MS		ZB-5, 0.5 df								
				Parent							
	QC Sample			Sample		:	:				<u> </u>
Analyte	Result	POL	SPK Added	Result	%REC	LowLimit	lighLimit	HighLimit RPD Ker Vai	No. T. D.	אדטבמזונ	C L
2-Methylnaphthalene	313	7.0	333	0	94	30	111	304	3.1	50	
Acenaphthene	341	7.0	333	0	102	28	110	330	33	50	
Acenaphthylene	340	7.0	333	0	102	23	126	339	0.2	50	
Anthracene	335	7.0	333	0	100	28	136	338	0.9	50	
Benzo[a]anthracene	284	7.0	333	0	85	31	146	312	9.4	5 5	
Benzolajpyrene	398	7.0	333	0	119	28	128	388	2.4	50	
Benzoibiliuoranthene	419	7.0	333	0	126	30	139	400	4.6	50	
Benzolg,h,ilperylene	455	7.0	333	0	137	21	149	429	6.0	50	
Benzofkiffuoranthene	393	7.0	333	0	118	42	129	380	3	50	
Chrysene	292	7.0	333	0	88	39	134	322	9.7	. 5	
Dibenzja, hjanthracene	424	7.0	333	0	127	30	138	409	3.5	50	
Fluoranthene	329	7.0	333	0	99	30	142	339	<u>ω</u>	50	
Fluorene	354	7.0	333	0	106	27	116	345	2.6	. S	
Indeno[1,2,3-cd]pyrene	432	7.0	333	0	130	17	164	416	3.8	50	,
Naphthalene	362	7.0	333	0	109	29	106	350	3.5	50	s
Phenanthrene	333	7.0	333	0	100	32	127	330	1,2	50	
Pyrene	327	7.0	. 333	0	98	28	130	331	1.2	50	
Sun. Terphenyl-d14	271	0	333	Đ	으	4	129	0		0	
	_										

01-Aug-08

Date:

ਲ ਫ

Qualifiers:

Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)
U Not Detected at the MDC or RL

Not Detected at the MDC or RL

Value exceeds the instrument calibration range

RPD exceeds accepted precision limit

S Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REFURT

Method:

SW8270C

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & G	ere Engineers, Inc					<u>Proje</u>	et:	BAE NOI	unoik sinb	Керац	
Sample ID: MB-7858 Client ID: ZZZZZ Instrument: MS05_26	SampType: MBLK Batch ID: 7858 ColumnID: DB-5MS	TestCod Method:	e: 8270W_SIMI SW8270C ZB-5, 0.5 df	Units: µg/L (SW3620C)		Prep Date: Analysis Dat	7/28/20 e: 7/30/2 0		RunNo: SeqNo:	14356 376538	,
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	%RI	PD RPDLimit	Qual
2-Methylnaphthalene	ND	0.200									
Acenaphthene	ND	0.200									
Acenaphthylene	ND	0.200	•								
Anthracene	ND	0.200									
Benzo[a]anthracene	ND	0.200									
Benzo[a]pyrene	, ND	0.200								•	
Benzo[b]fluoranthene	ND	0.200									
Benzo[g,h,i]perylene	ND	0.200									
Benzo[k]fluoranthene) ND	0.200									
Chrysene	· ND	0.200									
Dibenz[a,h]anthracene	, ND	0.200									
Fluoranthene	ND	0.200									
Fluorene	ND	0.200									
Indeno[1,2,3-cd]pyrene	, ND	0.200									
Naphthalene	ND	0.200									
Phenanthrene	ND	0.200									
Pyrene	ND.	0,200									
Surr: Terphenyl-d14	8.28	0	10	0	83	51	135				

Qualifiers:

Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

Value exceeds the instrument calibration range

RPD exceeds accepted precision limit

J Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

O'Brien & Gere Engineers, Inc

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT:

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SW8270C

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

Sample ID: MB-7862 Client ID: ZZZZZ Instrument: MS05_26	SampType: MBLK Batch ID: 7862 ColumnID: DB-5MS	TestCode Method:	9: 8270S_SIMP SW8270C ZB-5, 0.5 df	Units: µg/Kg (SW3550B)		Prep Date: Analysis Da	7/28/2 te: 7/30/2		RunNo SeqNo		356 3535	
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val		%RPD	RPDLimit	Qual
2-Methylnaphthalene	ND	7.0										
Аселарийнете	ND	7.0										
Acenaphthylene	, ND	7.0										
Anthracene	ND	7.0										
Benzo[a]anthracene	ND	7.0										
Benzo[a]pyrene	, ND	7.0										
Benzo[b]fluoranthene	ND	7.0										
Benzo[g,h,i]perylene	ND	7.0		•								
Benzo[k]fluoranthene	\ ND	7.0										
Chrysene	ND	7.0										
Dibenz[a,h]anthracene	ND	7.0										
Fluoranthene	ND	7.0										
Fluorene	ND	7.0										
Indeno[1,2,3-cd]pyrene	ND	7.0										
Naphthalene	ND	7.0										
Phenanthrene	ND	7.0										
Pyrene	ND	7.0		_			4			د.	-	
Surr: Terphenyl-d14	275	0	333	0	82	14	129			•	-	

Qualifiers:

ND Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

Analyte detected in the associated Method Blank

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

J Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Date: 08-Aug-08

CLIENT:

O'Brien & Gere Engineers, Inc

Lab Order:

0807110

Project:

BAE Northfolk Ship Repair

<u>:</u>			. , , ,				Percent Moisture
ample ID	Lab ID	Units	· Date Collected	Date Received	Date Analyzed	Batch ID	Moistare
	0807110-001A	w1%	7/22/2008	7/24/2008	7/24/2008	R14297	14.8
-111-01-SL01	0807110-001A	wt%	7/22/2008	7/24/2008	7/24/2008	R14297	16.1
3-111-02-SL01	***************************************		7/22/2008	7/24/2008	7/24/2008	R14297	14.5
3-114-01-SL01	0807110-003A	wt%	7/22/2008	7/24/2008	7/24/2008	R14297	12.6
-114-02-SL01	0807110-004A	wt%	7/22/2008	7/24/2008	7/24/2008	R14297	17.1
-105-01-SL01	0807110-005A	wt%	*	7/24/2008	7/24/2008	R14297	16.4
3-105-02-SL01	0807110-006A	w1%	7/22/2008		7/24/2008	R14297	16.9
B-111-51-SL01	0807110-007A	wt%	7/22/2008	7/24/2008			20,8
-111-03-SL01	0807110-008A	wt%	7/22/2008	7/24/2008	7/24/2008	R14297	
B-111-04-S101	0807110-009A	พเ%	7/22/2008	7/24/2008	7/24/2008	R14297	17.2

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

ANALYTICAL QC SUMMARY REPORT

Method:

SM 2540 G

Work Order:

0807110

Project:

BAE Northfolk Ship Repair

CLIENT: O'Brien & Gere	Engineers, Inc		Project: BAE Northfolk Ship Repair							
Sample ID: 0807110-002ADUP Client ID: SB-111-02-SL01 Instrument:	SampType: DUP Batch ID: R14297 ColumnID:	TestCode: PMO Method: SM 2	IST Units: wt% 540 G	Prep Date: Analysis Date: 7/24/2008	RunNo SeqNo					
Analyte	QC Sample Result	PQL SPK Ad	Parent Sample Ided Result	%REC LowLimit HighLimit RF		%RPD RPDLimit	Qual			
Percent Moisture	16.6	1.00			16.1	3.1 10				

Qualifiers:

B Analyte detected in the associated Method Blank

Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

Value exceeds the instrument calibration range

RPD exceeds accepted precision limit

J Analyte detected below the PQL

Spike Recovery outside accepted recovery limits